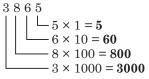
CBR modern sr.sec.school bahala Math-4 th class Solution PDF

1. Revision

- 1. to 4. As per answersheet.
 - 5. Place value of each digit in 4692. Place value of each digit in 3865.


$$4 6 9 2$$

$$-2 \times 1 = 2$$

$$-9 \times 10 = 90$$

$$-6 \times 100 = 600$$

$$4 \times 1000 = 4000$$

- 6. As per answersheet.
- 7. We know that for making smallest number using the given digits (2, 0, 1, 5). We arange the given digits in ascending order but we cannot put 0 at the left most place.

Smallest number = 1025.

For making greatest number using the given digits. We arrange the given digits in descending order.

Greatest number = 5210.

8. and 9. As per answersheet.

10. (a) We know that the number having more number of digits is greater. So we arrange the numbers according to their digits.

6 < 96 < 420 < 1998 < 4789

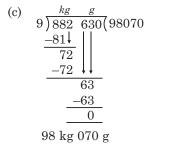
(b) Similarly by comparing numbers their ascending order is

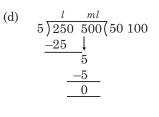
8 < 88 < 888 < 8088

- (c) Similarly, 5 < 20 < 777 < 4000 < 9658
- (a) We know that the number having less number of digits is smaller. So we arrange the numbers in descending order according to their number of digits.

9999 > 666 > 80 > 7

- (b) Similarly, 1023 > 345 > 95 > 9
- (c) Similarly, 2000 > 1765 > 999 > 10 > 8


12. As per answersheet.


13. (a) 16 :
$$16 + 7 = 23$$
; $23 + 7 = 30$; $30 + 7 = 37$; $37 + 7 = 44$; $44 + 7 = 51$; $51 + 7 = 58$; $58 + 7 = 65$

- (b) 165: 165 + 15 = 180; 180 + 15 = 195; 195 + 15 = 210 210 + 15 = 225; 225 + 15 = 240; 240 + 15 = 255; 255 + 15 = 270
- (c) 1050: 1050 + 50 = 1100; 1100 + 50 = 1150; 1150 + 50 = 1200;1200 + 50 = 1250; 1250 + 50 = 1300; 1300 + 50 = 1350;1650 + 50 = 1400

	(d)			= 9130 ; 9130 + 40 = 9170 ;
		9170 + 40 = 9210 ; 9290 + 40 = 9330	9210 + 40	= 9250 ; 9250 + 40 = 9290 ;
14.	(a)	₹ P 111 1 132 25 478 95 +101 50	(b)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	(c)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(d)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
15.	(a)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(b)	$ \begin{array}{c} m & cm \\ \hline 6 11 & 1117 \\ \hline 7 & 2 & 2 & 7 \\ \hline -2 & 9 & 5 & 8 \\ \hline 4 & 2 & 6 & 9 \end{array} $
	(c)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(d)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
16.	(a)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(b)	$\begin{array}{c}m & cm\\3 & 79\\ \times 2\\ \hline 7 & 58\end{array}$
	(c)	$\begin{array}{c} {}^{kg} & {}^{g} & {}^{g} \\ 7 & 5 & 0 & 0 \\ & \times & 4 \\ \hline 3 & 0 & 0 & 0 & 0 \end{array}$	(d)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
17.	(a)	$ \begin{array}{c} \overline{} $	(b)	$4 \overline{\smash{\big)}\begin{array}{c} 80 & 40 \\ \hline 80 & 40 \\ \hline 0 & 4 \\ \hline 20 \text{ m } 10 \text{ cm} \end{array}}$

50 l 100 ml

18. to 22. As per answersheet.

23. (a) We know that if denominator are same so we compare the numerators. We know that the fraction with greater numerator will be greater.

Here in
$$\frac{3}{7}$$
 and $\frac{4}{7}$.
 $\therefore 3 < 4$
So, $\frac{3}{7} < \frac{4}{7}$.
(b) 11 > 9 (c) 11 < 13

24. As per answersheet.

25. Devesh earns = ₹ 2600 per month. Rahul earns = ₹ 240.75 less than Devesh = ₹ 2600 - 240.75 = ₹ 2359.25

Their total monthly income = ₹ 2600 + ₹ 2359.25 = ₹ 4959.25

26. Raman weight = 62 kg 560 g
Raman's wife weight = 42 kg 400 gkgg \therefore 62 kg > 42 kg
So Raman is heavier.-42400
20-42Thus, Raman is heavier than his wife by 20 kg 160 g.

27. (a)
$$1 \text{ m} = 100 \text{ cm}$$
 (b) $\because 1 \text{ m} = 100 \text{ cm}$
 $14 \text{ m} 15 \text{ cm}$ $28 \text{ m} 53 \text{ cm}$
 $14 100 15 \text{ cm}$ $= 28 \times 100 + 50$
 $= 1415 \text{ cm}$ $= 2853 \text{ cm}$
(c) $\because 1 \text{ m} = 100 \text{ cm}$
 $84 \text{ m} = 84 \times 100 \text{ cm}$

28.	(a) :: 1 kg = 1000 g	(b) :: $1 \text{ kg} = 1000 \text{ g}$
	3 kg 250 g	4 kg 350 g
	$= 3 \times 1000 + 250$ g	$= 4 \times 1000 + 350 \text{ g}$
	= 3250 g	= 4350 g
	(c) :: $1 \text{ kg} = 1000 \text{ g}$	
	$8 \text{ kg } 50 \text{ g} = 8 \times 1000 + 50 \text{ g} =$	= 8050 g
29.	(a) $::$ 1 hour = 60 min	(b) :: 1 hour = 60 min
	9 hours 40 min	8 hours 16 min
	$= 9 \times 60 + 40 \min$	$= 8 \times 60 + 16 \min$
	= 580 min	= 496 min
	(c) \therefore 1 hour = 60 min	
	$15 \text{ hours} = 15 \times 60 \text{ min} = 900$	0 min
30.	: Factory produces bulbs in 8 da	ys = 480
	Factory produces bulbs in 1 da	$y = \frac{480}{8}$
	Factory will produce bulbs in 1	$0 \text{ days} = 60 \times 10$
		= 600
	Thus, factory will produce 600 bull	bs in 10 days at the same rate.
31.	(a) Mohan got a total of $= 89 + 86$	+ 69 + 71 + 64 = 379

- (b) :: 89 is the maximum marks Mohan got in **Maths**.
- (c) :: 64 is the least marks Mohan got in **English**.
- (d) Mohan obtained total marks of Maths and Science

= 89 + 86 = 175

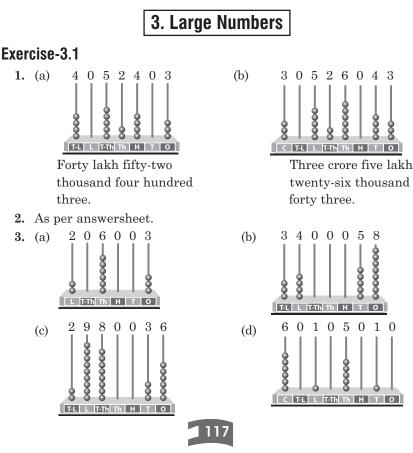
(e) Mohan obtained total marks in English, Social Science and Hindi = 64 + 69 + 71 = 204

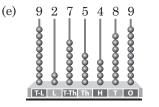
2. Roman Numerals

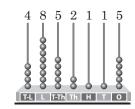
Exercise-2

1. (a) Roman number we represent

1 = I, V = 5, X = 10, L = 50, C =100, D = 500, M = 1000 27 = 10 + 10 + 5 + 1 + 1 = X + X + V + I + I = XXVII


- (b) 40 : We represent L = 50, X = 10
 40 = 50 10 = 40 = XL
- (c) 29 = 10 + 10 + 9 = X + X + IX = XXIX
- (d) 92 = 90 + 2 [(100 10) + 2] = XC + II = XCII
- (e) 39 = 10 + 10 + 10 + 9 = X + X + X + IX = XXXIX
- (f) 47 = 40 + 7 [(50 10) + 7] = XL + VII = XLVII


2. (a) XIV = X + IV = 10 + 4 = 14(b) LXIX = L + X + IX = 50 + 10 + 9 = 69(c) XXXV = X + X + X + V = 10 + 10 + 10 + 5 = 35(d) LIII = L + I + I + I = 50 + 1 + 1 + 1 = 53(e) LXXXIII = L + X + X + X + I + I + I= 50 + 10 + 10 + 10 + 1 + 1 + 1 = 83(f) LXXV = L + X + X + V = 50 + 10 + 10 + 5 = 75**3.** (a) 6 : Because V = 5, I = 1VI (b) 11 : X = 10, I = 1XI (c) 10 : X = 10Х (d) 55 : L = 50, V = 5LV (e) 4 : IV = (5-1) = 4IV (f) 93 : L = 50, XL = 40, III = 3 LXLIII 4. As per answersheet. 5. (a) XX = 10 + 10 = 20LXXIII = 50 + 10 + 10 + 1 + 1 + 1 = 73LXXXIX = 50 + 10 + 10 + 10 + 9 = 89LXXI = 50 + 10 + 10 + 1 = 71XXXVIII = 10 + 10 + 10 + 5 + 1 + 1 + 1 = 3820, 38, 71, 73, 89 (b) XL = 50 - 10 = 40XXI = 10 + 10 + 1 = 21XLIX = (50 - 10 = 40) 40 + 9 = 49LXX = 50 + 10 + 10 = 70LXXI = 50 + 10 + 10 + 1 = 7121, 40, 49, 70, 71 (c) XLI = (50 - 10 = 40) 40 + 1 = 41XXX = 10 + 10 + 10 = 30LXXXVII = 50 + 10 + 10 + 10 + 5 + 1 + 1 = 87LXX = 50 + 10 + 10 = 70XL = (50 - 10) = 4030, 40, 41, 70, 87 (d) XCI = (100 - 10 = 90) 90 + 1 = 91LXXV = 50 + 10 + 10 + 5 = 75XXXII = 10 + 10 + 10 + 1 + 1 = 32LXXXIII = 50 + 10 + 10 + 10 + 1 + 1 + 1 = 83LXIV = 50 + 10 + (5 - 1 = 4) = 6432, 64, 75, 83, 91


- (e) XC = 100 10 = 90 XCVI = (100 - 10 = 90) 90 + 6 = 96 LXXX = 50 + 10 + 10 + 10 = 80 XXXIV = 10 + 10 + 10 + 4 = 34 LXII = 50 + 10 + 1 + 1 = 6234, 62, 80, 90, 96
- 6. As per answersheet.
- 7. (a) XXX XXIV = 30 24 = 6 = VI
 - (b) L XL = 50 40 = 10 = X
 - (c) XLIV + XI = 44 + 11 = 55 = LV
 - (d) XLI + IX = 41 + 9 = 50 = L
 - (e) XC + XL = 90 + 40 = 130 = CXXX
 - (f) L XV = 50 15 = 35 = XXXV

CHECK YOURSELF

1. to 4. As per answersheet.

4. and 5. : As per answersheet.

6.	(a)	Mill
		H-M

Millions period			Thou	Ones period				
H-M	T-M	М	H-Th	T-Th	Th	Η	Т	0
2	1	7	2	9	5	2	1	0

Now reading from the left the numbers 217 million 295 thousand 210. In words, two hundred seventeen million two hundred ninety five thousand two hundred ten.

(f)

(b) to (f) solve as question (a).

7. As per answersheet.

8.

	T-C C		T-L L		, r	T-Th Th			Η	Т	0
(a)	1	2	0	5		0	0		0	1	3
(b)	0	4	0	1		0	1		7	0	0
(c)	0	0	8	3		3	5		0	1	3
(d)	4	6	5	1		9	0		3	1	1
(e)	0	1	0	5		0	5		5	0	5

9. and 10. As per answersheet.

Exercise-3.2

 (a) Place value of a digit is the numerical value that digit has by virtue of its position in a number.

Here in 431076843

T-C	С	T-L	L	T-Th	Th	Н	Т	0
4	3	1	0	7	6	8	4	3

8 is at hundreds place.

So, the place value of 8 in 431076843 8 × 100 = 800

(b) Similarly, In 856341079

T-C	С	T-L	L	T-Th	Th	Н	Т	0
8	5	6	3	4	1	0	7	9

8 is at ten-crores place.

So, the place value of 8 in 856341079

8 × 1,00,00,000 = 8,00,00,000

Page 8 of 105

(c) In, 759860113

T-C	С	T-L	L	T-Th	Th	Η	Т	0
7	5	9	8	6	0	1	1	3

8 is at lakhs place.

So, the place value of 8 in 759860113

2. (a) In 26189

6 is at thousand place

So, the place value of 6 in 26189

 $= 6 \times 1,000 = 6,000$

 $\mathbf{2}$ 6 1 8 9 The face value of digit in a number is the value of digit itself.

T-Th Th

So, face value of 6 in 26189 6.

(b) Similarly, in 879102

9 is at thousands place.

So, the place value of 9 in 879102 $= 9 \times 1,000 = 9000$

The face value of 9 in 879102 = 9.

(c) In 1456800

8 is at hundreds place.

So, the place value of 8 in $1456800 = 8 \times 100 = 800$

The face value of 8 in 1456800 = 8

(d) In 400007

7 is at ones place So, the place value of 7 in 400007

$$= 7 \times 1 = 7$$

The face value of 7 in 400007 = 7

(e) In 789067

7 is at lakhs place.

So the place value of 7 in 789067 $= 7 \times 1,00,000 = 7,00,000$

The face value of 7 in 789067 = 7.

(f) In 9670315

3 is at hundreds place.

So, the place value of 3 in

 $9670315 = 3 \times 100 = 300$

The face value of 3 in 9670315 = 3.

L	T-Th	Th	Η	Т	0
8	7	9	1	0	2

T-L	L	T-Th	Th	Η	Т	0
1	4	5	6	8	0	0

L	T-Th	Th	Η	Т	0
4	0	0	0	0	7

L	T-Th	Th	Η	Т	0
7	8	9	0	6	7

T-L	L	T-Th	Th	Н	Т	0
9	6	7	0	3	1	5

8 x	1 00 000	= 8,00,000
0 ~	1,00,000	-0,00,000

Η Т 0 (g) In 548372

7 is at tens place.

So, the place value of 7 in 548372

 $= 7 \times 10 = 70$

 \mathbf{L} T-Th Th Η Т 0 54 8 3 7 $\mathbf{2}$

The face value of 7 in 548372 = 7

(h) In 632354

2 is at thousands place. So, the place value of 2 in 632354 $= 2 \times 1,000 = 2000$

L	T-Th	Th	Н	Т	0
6	3	2	3	5	4

2	
υ	٠

NI L.	Cro	Crores L		hs	Thousands		Ones		
Number	T-C	С	T-L	L	T-Th	Th	Н	Т	0
(a) 678453				6	7	8	4	5	3
(b) 5380049			5	3	8	0	0	4	9
(c) 43000895		4	3	0	0	0	8	9	5
(d) 6050308			6	0	5	0	3	0	8

4. We know that the place values of all the digits of a number joined with plus signs are called its expanded form.

- (a) Expanded form of 451397 $4 \times 100000 + 5 \times 10000 + 1 \times 1000 + 3 \times 100 + 9 \times 10 + 7 \times 1$ So, expanded form = 4,00,000 + 50,000 + 1,000 + 300 + 90 + 7
- (b) Expanded form of 3748961

 $3 \times 1000000 + 7 \times 100000 + 4 \times 10000 + 8 \times 1000 +$

$$9 \times 100 + 6 \times 10 + 1 \times 1$$

30,00,000 + 7,00,000 + 40,000 + 8,000 + 900 + 60 + 1

- (c) Expanded form of 4797658 $4 \times 1000000 + 7 \times 100000 + 9 \times 10000 + 7 \times 1000 + 6 \times 100$ $5 \times 10 + 8 \times 1$
 - 40,00,000 + 7,00,000 + 90,000 + 7,000 + 600 + 50 + 8
- (d) Expanded form of 2459763 $2 \times 1000000 + 4 \times 100000 + 5 \times 10000 + 9 \times 1000 + 7 \times 100$ $6 \times 10 + 3 \times 1$ 20,00,000 + 4,00,000 + 50,000 + 9,000 + 700 + 60 + 3

5. As per answersheet.

6. We know that the number coming just after a given number is called the successor of the given number.

Number	+1	Successor
(a) 823564	823564 + 1	823565
(b) 3082937	3082937 + 1	3082938
(c) 50999	50999 + 1	51000
(d) 8540769	8540769 + 1	8540770

So, we can find the successor by adding 1 to the given number.

7. We know that the number coming just before a given number is called the predecessor of the given number.

So, we can find the predecessor by subtracting 1 from the given number.

Number	-1	Predecessor
(a) 900988	900988 - 1	900987
(b) 7000000	7000000 - 1	6999999
(c) 8631919	8631919 - 1	8631918
(d) 9849275	9849275 - 1	9849274

8. (a) 21362, 21362 + 10,000 = 31362, 31362 + 10,000 = 41362So, 41362 + 10,000 = 51362, 51362 + 10,000 = 61362,

```
61362 + 10,000 = 71362
```

(b) 16508, 16508 + 300 = 16808, 16808 + 300 = 17108
So, 17108 + 300 = 17408, 17408 + 300 = 17708,

$$17708 + 300 = 18008$$

(c) 52604, 52604 + 1000 = 53604, 53604 + 1000 = 54604So, 54604 + 1000 = 55604, 55604 + 1000 = 56604,

```
56604 + 1000 = 57604
```

(d) 92586, 92586 + 100 = 92686, 92686 + 100 = 92786So, 92786 + 100 = 92886, 92886 + 100 = 92986

```
92986 + 100 = 93086
```

Exercise 3.3

- 1. (a) We compare the numbers by the place value chart.
 - \therefore 5 thousands > 1 thousands 5467 > 1998
 - (b) :: 9 thousands > 8 thousands 9999 > 8999

- (c) Digits at the ten-thousands, thousands and hundreds places are equal. So we will compare the digits at tens place.
 - ∴ 5 tens > 0 ones 83750 > 83700
- (d) ∵ 9 lakhs > 8 lakhs 900134 > 897654
- (e) Digits at ten-lakhs, lakhs, ten-thousands and thousands places are equal. So we will compare the digits at hundreds place.
 - $\therefore 2 < 4$ 1643287 < 1643478
- (f) ∵ 30 lakhs < 36 lakhs 3098654 < 3654213</p>
- **2.** (a) To form the greatest number using the given digits we arrange the given digits in descending order.
 - 5, 6, 9, 0, 3, 7

Descending order of digits = 976530

So the greatest number formed by given digits = 976530

(b) To form smallest number using the given digits we arrange them in ascending order but we cannot put 0 in left most place.

Ascending order of digits = 126789

So, the smallest number formed by given digits = 126789

(c) Similar to Q. b

Ascending order of digits = 15678

So, the smallest number formed by given digits = 15678

3. Similar to Q. 2

			•			
4.	(a)	T-Th	Th	Н	Т	0
		2	0	9	9	3
		2	0	9	9	9
		2	9	0	0	3
		2	3	9	0	2

By comparison we find that 29003 > 23902 > 20999 > 20993 So the ascending order of the numbers is 20993 < 20999 < 23902 < 29003

(b) T-Th Th Η Т 0 9 1 1 0 6 7 6 1 1 0 7 6 7 9 9 7 9 1 1 0

By comparison ascending order of the numbers is

61107 < 71109 < 76799 < 91106

(c)	L	T-Th	Th	Η	Т	0
	1	3	2	0	0	2
	1	0	2	1	0	1
	1	2	0	3	1	1
	1	2	2	3	1	1

By comparison ascending order of the given numbers are

5. (a) Similar to Q. 4.

	0	Т	Η	Th	T-Th
	1	1	3	4	5
By co	3	4	5	1	1
numb	5	5	1	3	4
54311	5	2	1	3	4

By comparison descending order of the numbers is

54311 > 43155 > 43125 > 11543

(b)	T-Th	Th	Н	Т	0	
	8	2	3	1	0	
	1	8	0	8	6	
	2	8	2	3	8	
	2	2	3	8	8	

By comparison descending order of the numbers is

82310 > 28238 > 22388 > 18086

(c)	L	T-Th	Th	Н	Т	0
		6	9	0	2	3
	9	6	2	0	3	3
	3	2	3	2	1	6
			6	2	4	2

By comparison the descending order of the numbers is 962033 > 323216 > 69023 > 6242

CHECK YOURSELF.

1. to 4. As per answersheet.

4. Addition

Exercise 4.1

- 1. (a) T-Th Th H T O
 - $\begin{array}{r}
 4 & 6 & 3 & 2 & 1 \\
 + & 4 & 2 & 6 & 5 & 3 \\
 \hline
 8 & 8 & 9 & 7 & 4
 \end{array}$

Step 1 : Add ones 1 + 3 = 4 ones Step 2 : Add tens 2 + 5 = 7 tens Step 3 : Add hundreds 3 + 6 = 9 hundreds Step 4 : Add thousands = 6 + 2 = 8 thousands Step 5 : Add ten-thousands 4 + 4 = 6

8 ten-thousands

	(b) Similarly,	$\begin{array}{ccccccc} \text{T-Th Th H} & \text{T O} \\ 1 & 3 & 2 & 4 & 5 \\ + & 7 & 6 & 6 & 5 & 3 \\ \hline & 8 & 9 & 8 & 9 & 8 \end{array}$	(c)	$\begin{array}{ccccccc} \text{T-Th Th H} & \text{T O} \\ 6 & 3 & 2 & 5 & 6 \\ + & 1 & 4 & 5 & 0 & 2 \\ \hline 7 & 7 & 7 & 5 & 8 \end{array}$
2.	(a) L T-Th Th H 4 3 2 0 1 2 3 5 + 2 1 3 5 7 6 8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(b)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	(c) L T-Th Th 5 4 0 1 3 + 3 2 4 8 7 7	H T O 3 4 2 0 5 6 3 0 1 6 9 9	(d)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\begin{array}{ccccc} \text{(e)} & \text{L T-Th T} \\ 1 & 3 & 1 \\ 4 & 2 & 0 \\ 2 & 0 & 3 \\ + 1 & 3 & 2 \\ \hline & 8 & 8 & 6 \\ \end{array}$	0 3 1 3 2 0 8 2 0 5 2 1 3 2	(f)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
3.	(a) $\begin{array}{c} \text{T-Th Th H T} \\ 2 & 0 & 0 & 1 \\ 1 & 6 & 2 & 5 \\ + & 4 & 3 \\ \hline 3 & 6 & 6 & 9 \end{array}$	0 0 1 2 3	(b)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	(c) L T-Th Th 1 0 3 2 1 1 2 0 3 + 2 3 0 7 4 7	H T O 2 5 1 4 4 2 0 0 1 0 0 3 6 9 7	(d)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1		thousand five hu	adrod	

4. (a) Twenty-four thousand five hundred twenty = 24520 Sixty-two thousand and thirty = 62030 Twelve thousand two hundred forty = 12240 Sum of the numbers 2452062030+1224098790

Nintey-eight thousand seven hundred ninety

C.B.R.MODERN SR.SEC.SCHOOL BAHALA REWARI Page 14 of 105

(b) One lakh twenty-three thousand four hundred fifty-six

= 123456

Forty-five thousand = 45000Twenty-six lakh seven thousand two = 2607002Sum of the numbers $1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 0 \\ 0$

Twenty-seven lakh seventy-five thousand four hundred fifty-eight.

+26070022775458

(c) Twenty-three thousand two = 23002
Three lakh eight thousand five hundred = 308500
Forty-one thousand two hundred four = 41204
Sum of the numbers = 1

$$\begin{array}{r} 18 - \\ 2 3 0 0 2 \\ 3 0 8 5 0 0 \\ + 4 1 2 0 4 \\ \hline 3 7 2 7 0 6 \end{array}$$

Three lakh seventy-two thousand seven hundred six.

5. (a) Decreasing order of the numbers is

232305 > 201012 > 141030Sum of the numbers = 2 3 2 3 0 5 1 4 1 0 3 0 + 2 0 1 0 1 2 5 7 4 3 4 7 (b) Decreasing order of the numbers is

410101 > 303030 > 202020

Sum of the numbers = $4\ 1\ 0\ 1\ 0\ 1$ $3\ 0\ 3\ 0\ 3\ 0$ $+\ 2\ 0\ 2\ 0\ 2\ 0$

 $9\ 1\ 5\ 1\ 5\ 1$

(c) Decreasing order of the numbers is

232412 > 142045 > 123531Sum of the numbers = 2 3 2 4 1 2 1 4 2 0 4 5 + 1 2 3 5 3 1 4 9 7 9 8 8

(d) Decreasing order of the numbers is 143568 > 121410 > 114021 Sum of the numbers = 143568 121410 +114021 3789999 (e) Decreasing order of the numbers is 321620 > 214056 > 143213
Sum of the numbers = 321620 214056 +143212 678889
(f) Decreasing order of the number is $321210 > 312441 > 203332$
Sum of the numbers = $321210 \times 312441 \times 203332$ $321210 \times 312441 \times 203332$ 312441 +203332 836983
Exercise 4.2
1. (a) L T-Th Th H T O (b) T-Th Th H T O (c) T-Th Th H T O 1 1 1 6 3 4 8 3 6 7 8 3 6 7 1<
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
2. (a) $\begin{bmatrix} L & T-Th & Th & H & T & O \\ \hline 1 & \hline 1 & 1 & \hline 1 & 1 \\ 3 & 5 & 9 & 7 & 3 & 9 \\ 6 & 4 & 4 & 0 & 6 \\ & & & 5 & 2 & 4 & 0 \\ & & & & + & 4 & 5 & 2 \\ \hline 4 & 2 & 9 & 8 & 3 & 7 \\ \hline \end{array}$ (b) $\begin{bmatrix} L & T-Th & Th & H & T & O \\ \hline 2 & \hline 1 & 1 & 1 & 1 \\ \hline 4 & 6 & 8 & 8 & 3 & 9 \\ & & & 6 & 6 & 0 & 3 \\ & & & + & 5 & 4 & 3 & 4 & 5 \\ \hline \hline \end{array}$
(c) L T-Th Th H T O $ \begin{array}{ccccccccccccccccccccccccccccccccccc$

126

C.B.R.MODERN SR.SEC.SCHOOL BAHALA REWARI Page 16 of 105

3.	(a)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(b) L T-Th Th H T O $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
	(c)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$ \begin{array}{c} (d) & \begin{array}{c} L & T \cdot Th \ Th \ H \ T \ O \\ \hline 1 & \hline 1 & \boxed{2} & \boxed{2} & 4 \\ 3 & 5 & 2 \ 4 & 5 & 2 \\ & 4 & 6 \ 7 & 3 & 2 \\ & 2 & 6 \ 9 & 9 \\ & & 9 \ 0 & 9 \\ & & & 9 \ 9 \\ & & & & 9 \ 9 \\ \hline & & & & & \\ & & & & 4 \ 0 \ 2 \ 9 \ 0 \ 0 \end{array} $
4.	(a)	36 ones	(b)	54 tens
		30 ones + 6 ones		50 tens + 4 tens
		3 tens + 6 ones		5 hundreds + 4 tens
	(c)	28 hundreds	(d)	37 thoudsands
		20 hundreds + 8 hundreds		30 thousands + 7 thousands
		2 thousands + 8 hundreds		3 ten-thousands + 7 thousands
	(e)	15 ten-thousands		
		10 ten-thousands + ten the	ousa	unds
	(6	1 lakh + 5 ten thousands		
	(f)	18 lakhs		
		10 lakhs + 8 lakhs		
5.	(a)	1 ten-lakh + 8 lakhs 3 ones + 8 ones	((b) 5 tens + 6 tens
э.	(a)	11 ones	(11 tens
		10 ones + 1 one		10 tens + 1 ten
		1 ten 1 one		1 hundred 1 ten
	(c)	7 hundreds + 4 hundreds	((d) 9 thousands + 6 thousands
	(-)	11 hundreds	```	10 thousands
		10 hundreds + 1 hundred		10 thousands + 5 thousands
		1 thoudsand 1 hundred		1 ten-thousand 5 thousands
6.	(a)	64 ones = 60 ones + 4 ones	= 6	tens + 4 ones
		37 tens = 30 tens + 7 ones	= 3	hundreds + 7 tens
		26 hundreds = 20 hundred	s + (6 hundreds = 2 thousands
				+ 6 hundreds

20 thousands = 2 ten-thousands 64 ones + 37 tens + 26 hundreds + 20 thousands6 hundreds + 2 ten-thousands = 2 ten-thousands + 2 thousands + 9 hundreds + 13 tens +4 ones = 2 ten-thousands + 2 thousands + 9 hundreds + 10 tens +3 tens + 4 ones= 2 ten-thousands + 2 thousands + 9 hundreds + 1 hundred +3 tens +4 ones = 2 ten-thousands + 2 thousands + 10 hundreds + 3 tens +4 ones = 2 ten-thousands + 2 thousands + 1 thousand + 3 tens +4 ones = 2 ten-thousands + 3 thousands + 3 tens + 4 ones = Twenty-three thousand thirty-four = 23,034(b) 42 ones = 40 ones + 2 ones = 4 tens + 2 ones17 hundreds = 10 hundreds + 7 hundreds = 1 thousand + 7 hundreds 42 ones + 17 hundreds + 7 ten thousands= 4 tens + 2 ones + 1 thousand + 7 hundreds + 7 ten-thousands= Seventy-one thousand seven hundred forty-two = 71,742(c) 61 tens = 60 tens + 1 ten = 6 hundreds + 1 ten12 thousands = 10 thousands + 2 thousands = 1 ten-thousand + 2 thousands 11 ten-thousands = 10 ten-thousands + 1 ten-thousand= 1 lakh + 1 ten-thousand 61 tens + 4 hundreds + 12 thousands = 11 ten-thousand = 6 hundreds + 1 ten + 4 hundreds + 1 ten-thousand + 2 thousands + 1 lakh + 1 ten-thousand = 1 lakh + 2 ten-thousands + 2 thousands + 10 hundreds + 1 ten = 1 lakh + 2 ten-thousands + 2 thousands + 1 thousand + 1 ten = 1 lakh + 2 ten-thousands + 3 thousands + 1 ten = One lakh twenty-three thousand ten = 1,23,010

C.B.R.MODERN SR.SEC.SCHOOL BAHALA REWARI Page 18 of 105

(d) 214 ones = 200 ones + 10 ones + 4 ones = 2 hundreds + 1 ten +4 ones 18 hundreds = 10 hundreds + 8 hundreds = 1 thousand + 8 hundreds 71 thousands = 70 thousands + 1 thousand = 7 ten-thousands + 1 thousand 214 ones + 18 hundreds + 71 thousands + 4 ten-thousands = 2 hundreds + 1 ten + 4 ones + 1 thousand + 8 hundreds +7 ten-thousands +1 thousand +4 ten-thousands = 11 ten-thousands + 2 thousands + 10 hundreds + 1 ten +4 ones = 10 ten-thousands + 1 ten-thousands + 2 thousands + 1 thousand + 1 ten + 4 ones = 1 lakh + 1 ten-thousands + 3 thousands + 1 ten + 4 ones = One lakh thirteen thousand fourteen = 1.13,014

Exercise 4.3

1. and 2. As per answersheet.

$4 \ 0 \ 0 \ 0 \ 5$
· 7520
• 4 1 5 5 3
89078

```
4. (a) 132154 + 127563

= 132154 + 100000 + 20000 + 7000 + 500 + 60 + 3

= 232154 + 20000 + 7000 + 500 + 60 + 3

= 252154 + 7000 + 500 + 60 + 3

= 259154 + 500 + 60 + 3

= 259714 + 3

= 259717

(b) 27846 + 57632

= 27846 + 50000 + 7000 + 600 + 30 + 2

= 77846 + 7000 + 600 + 30 + 2

= 84846 + 600 + 30 + 2

= 85446 + 30 + 2

= 85476 + 2

= 85478
```

```
129
```

```
(c) 214131 + 205406
   = 214131 + 200000 + 5000 + 400 + 6
   = 414131 + 5000 + 400 + 6
   = 419131 + 400 + 6
   = 419531 + 6
   = 419537
(d) 105732 + 253162
   = 105732 + 200000 + 50000 + 3000 + 100 + 60 + 2
   = 305732 + 50000 + 3000 + 100 + 60 + 2
   = 355732 + 3000 + 100 + 60 + 2
   = 358732 + 100 + 60 + 2
   = 358832 + 60 + 2
   = 358892 + 2
   = 358894
(e) 143465 + 165488
   = 143465 + 100000 + 60000 + 5000 + 400 + 80 + 8
   = 243465 + 60000 + 5000 + 400 + 80 + 8
   = 303465 + 5000 + 400 + 80 + 8
   = 308465 + 400 + 80 + 8
   = 308865 + 80 + 8
   = 308945 + 8
   = 308953
(f) 328105 + 140321
   = 328105 + 100000 + 40000 + 300 + 20 + 1
   = 428105 + 40000 + 300 + 20 + 1
   = 468105 + 300 + 20 + 1
   = 468405 + 20 + 1
   = 468425 + 1
   = 468426
```

Exercise 4.4

1.	Number of jeans manufactured in 2015 = 62473	62473	3
	Number of jeans manufactured in 2016 = 36425	+36425	_
	Total jeans manufactured 98,898 jeans in two years988		3
	Hence, the factory manufactured 98,898 jeans in two ye	ears.	
2.	Number of children in exhibition = 5725	៣០ ៣	

	12 1
Number of men in exhibition = 15700	5725
Number of women in exhibition = 14625	$1\ 5\ 7\ 0\ 0$
Total people = 36050	+14625
Hence, 36,050 peope in all visited the exhibition.	36050
fience, 50,000 peope in an visited the exhibition.	

C.B.R.MODERN SR.SEC.SCHOOL BAHALA REWARI Page 20 of 105

3.	Notebooks in a bookshop = 565 More number of books = 5250 Total books = 5815 Hence, there are 5,815 notebooks in the bookshop n	$ \begin{array}{r} 1 \\ 5 & 6 & 5 \\ + & 5 & 2 & 5 & 0 \\ \hline \hline 5 & 8 & 1 & 5 \\ \text{now.} \end{array} $
4.	Cost of a TV = 45,575 Cost of a refrigerator = 25,615 Total cost = 71,190 Hence, he spend ₹71,190 in all.	$ \begin{array}{c} 1 1 \\ 1 \\ $
5.	Weight of potatoes = 10545 kg Weight of onions = 11275 kg Weight of tomatoes = 100025 kg Total weight = 31,845 Hence, he sold 31,845 kg of the vegetables.	$\begin{array}{c} \hline 1 \\ 1 \\ 0 \\ 5 \\ 4 \\ 5 \\ kg \\ 1 \\ 1 \\ 2 \\ 7 \\ 5 \\ kg \\ + \\ 1 \\ 0 \\ 0 \\ 2 \\ 5 \\ kg \\ \hline 3 \\ 1 \\ 8 \\ 4 \\ 5 \\ kg \end{array}$

CHECK YOURSELF

1. to 4. As per answersheet.

5. Subtraction

Exercise 5.1

1.	(a) $\begin{array}{c} \text{T-Th Th H H T} \\ 5 & 6 & 7 \ 1 \\ - & 2 & 3 & 4 \ 0 \\ \hline & 3 & 3 & 3 \ 1 \end{array}$	$\begin{array}{c} 5\\ 5\\ 3\\ \hline \\ 3\\ \hline \\ 3\\ \hline \\ \\ \end{array}$ Step 2 : Subtract tens 1 - 0 = 1 ten $\begin{array}{c} 5\\ -3\\ \hline \\ 3\\ \hline \\ \\ \end{array}$ Step 3 : Subtract hundreds 7 - 4 = 3 hundreds
	(b) Similarly,	$ \begin{array}{c} = 3 \text{ ten-thousands} \\ \hline \text{T-Th Th H T O} \\ 4 & 8 & 3 & 9 & 4 \\ \hline -1 & 4 & 2 & 1 & 2 \\ \hline 3 & 4 & 1 & 8 & 2 \\ \hline \end{array} $ (c) $ \begin{array}{c} \text{T-Th Th H T O} \\ 8 & 9 & 3 & 4 & 4 \\ \hline -1 & 4 & 2 & 2 & 1 \\ \hline 7 & 5 & 1 & 2 & 3 \\ \hline \end{array} $
2.	(a) $\begin{array}{c} L & T-Th & Th \\ 1 & 5 & 4 \\ \hline -1 & 5 & 4 \\ \hline 0 & 0 & 0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	(c) L T-Th Th 4 2 3 -2 1 3 2 1 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

C.B.R.MODERN SR.SEC.SCHOOL BAHALA REWARI

Page 21 of 105

3.	(a)	L T-Th Th H T O 9 8 6 5 7 8 -4 1 5 3 7 8	(b)	L T-Th Th H T O 5 6 8 9 7 8 -2 3 4 5 6 8
	(c)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(d)	3 3 4 4 1 0 L T-Th Th H T 0 4 6 5 1 2 4 -1 5 4 0 1 4
	(e)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(f)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
4.	(a)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(b)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	(c)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(d)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	(e)	$ \begin{array}{c} & \begin{array}{c} & \\ & \text{L T-Th Th H T O} \\ & 5 & 3 & 6 & 9 & 1 & 9 \\ \hline & -3 & 3 & 2 & 1 & 0 & 8 \\ \hline & 2 & 0 & 4 & 8 & 1 & 1 \end{array} $	(f)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Exercise 5.2

(a) Twenty-seven thousand twenty-five = 27025
 One lakh five hundred = 100500

$$\begin{array}{r} 9 \ \hline 104 \ 9 \ \hline 10 \\ -2 \ 7 \ 0 \ 2 \ 5 \\ \hline 7 \ 3 \ 4 \ 7 \ 5 \end{array}$$
their differnce =
$$\begin{array}{r} 9 \ \hline 104 \ 9 \ \hline 10 \\ -2 \ 7 \ 0 \ 2 \ 5 \\ \hline 7 \ 3 \ 4 \ 7 \ 5 \end{array}$$

Sevent-three thousand four hundred seventy-five

(b) one lakh = 100000

Ninety-six thousand nine hundred nine= 96909

 $\begin{array}{r} 9 & 9 & 9 & 9 & 10 \\ 10 & -0 & -0 & -0 & -0 \\ - & 9 & 6 & 9 & 0 & 9 \\ \end{array}$ their difference = $\begin{array}{r} 3 & 0 & 9 & 1 \\ \hline \end{array}$

Three thousand ninety-one

(c) Six lakh forty-thousand two = Four lakh sixty-two thousand five hundred eighty-three = their difference =

One lakh seventy-seven thousand four hundred nineteen

(d) Thirty-two thousand seven hundred twenty = 32720

Twenty-eight thousand seven-hundred thirty-six = 28736

		i weing eight thea		2 11 16 11 10		20100
				$\overline{3}$ $\overline{2}$ $\overline{7}$ $\overline{2}$ $\overline{0}$		
			_	-2 8 7 3 6		
		their difference =	-	3 9 8 4		
		Three thousand ni			r.	
2.	(a)	T-Th Th H T O 4 13 7 13 12 5	(b)	T-Th Th H T O 3 121710 4 8 8 9 4	(c)	Τ-Th Th Η T O 2 15 10 1 10 3 6 θ 2 9
		$\frac{-4}{0} \frac{5}{8} \frac{7}{6} \frac{6}{3} \frac{3}{7} \frac{3}{9}$		$\frac{-3 \ 5 \ 9 \ 9 \ 0}{0 \ 7 \ 8 \ 1 \ 4}$		$\frac{-7908}{28112}$
9	()		a >		$\langle \rangle$	
3.	(a)	T-Th Th Η T O 8 9 9 1412 9 θθ52	(0)	T-Th Th H T O 7 1418915 8 5 905	(c)	T-Th Th H T O 1 1110910 2 2 700
		- 5 3 3 6 9		- 9 9 9 7		- 9 8 8 9
		3 6 6 8 3		7 5 9 0 8		1 2 2 1 1
	(d)	LT-ThTh H T O 4 18 6 10 2 14 5 8 7 P 3 4	(e)	L T-Th Th H T O 2 15 11 13 12 12 3 6 2 4 3 2	(f)	LT-ThTh H T O 4 12 6 16 5 2 7 6 4 3
		-495427		-292835		-496932
		9 1 6 0 7		0 6 9 5 9 7		0 3 0 7 1 1
4.	(a)	614 76874	(b)	191012 そ日子子75	(c)	<u>11049910</u> そみをひ00
		-50427		-104613		-151603
		2 6 4 4 7		096662		053397
	(d)	210 7 み ひ 9 9 0	(e)	21049910 375000	(f)	5999910 &
		$-2\ 2\ 5\ 6\ 4\ 0$		-151603		-74032
		505350		153397		525968
5.	(a)	316 467843]912 -0-2-6
		-2 9 3 0 4 2		<u>-2</u>	8 4	976
		174801		2	5 5	0 5 0
	(c)	291410310 395949		(d) 2	618 78	
		- 9 8 6 3 9		-2	69	872
		2 0 6 4 0 1		0	0 9	1 0 4

6. As per answersheet.

Exercise 5.3

	0100			
1.	(a)	$ \begin{array}{c} 1 \\ -4 & 5 & 3 & 2 & 3 \\ + & 8 & 5 & 6 & 7 & 3 \\ \hline 1 & 3 & 0 & 9 & 9 & 6 \end{array} $	$ \begin{array}{r} 1210\\ +3.09\\ -5.54\\ 7.55 \end{array} $	$\begin{array}{c}9 & 6\\ \hline 3 & 2\\ \hline 6 & 4\end{array}$
	(b)	$ \begin{array}{r} 2 & 4 & 3 & 7 \\ + 8 & 3 & 4 & 2 \\ \hline 1 & 0 & 7 & 7 & 9 \end{array} $	$ \begin{array}{r} 1 & 6 & 0 & 4 \\ + 4 & 3 & 9 & 5 \\ \overline{5} & 9 & 9 & 9 \end{array} $	$916171 & & & \\ 7 & & & \\ - & 5 & 9 & 9 & 9 \\ 4 & 7 & 8 & 0 \\ \end{array}$
	(c)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} 161217 \\ + 7 & 3 & 7 & 6 \\ - 9 & 5 & 9 & 2 \\ \hline 7 & 7 & 8 & 4 \end{array} $
	(d)	$ \begin{array}{c} 121\\ 61243\\ 28935\\ +74831\\ 165009 \end{array} $	11214 234 -165 69	
	(e)	$ \begin{array}{r} 1 \\ 3 8 6 7 2 \\ + 1 2 5 6 \\ \overline{39928} + 1 \\ \end{array} $	$ \begin{array}{c} $	
	(f)	600000	$ \begin{array}{c} 1 \\ 1 \\ 4 \\ 3 \\ 2 \\ 1 \\ 4 \\ 3 \\ 2 \\ 1 \\ 4 \\ 3 \\ 2 \\ 1 \\ 4 \\ 3 \\ 2 \\ 1 \\ 4 \\ 3 \\ 2 \\ 1 \\ 4 \\ 4 \\ 3 \\ 2 \\ 1 \\ 4 \\ 4 \\ 1 \\ 3 \\ 0 \\ 8 \\ 8 \\ 8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	5912015 $602159-113088 489071$
2.	(a)	142046 - 41045 = 142046 - (4000) = 142046 - 40000 = 102046 - 1000 = 101046 - 40 - 40 = 101006 - 5	0 - 1000 - 40 - 5	
	(b)	= 101001	- 3000 - 70 - 700 - 10 -	00 - 10 - 2

```
= 11153 - 10 - 2
      = 11143 - 2
      = 11141
   (c) 763548 - 632014
      = 763548 - (600000 + 30000 + 2000 + 10 + 4)
      = 763548 - 600000 - 30000 - 2000 - 10 - 4
      = 163548 - 30000 - 2000 - 10 - 4
      = 133548 - 2000 - 10 - 4
      = 131548 - 10 - 4
      = 131538 - 4
      = 131534
   (d) 563208 - 431107
      = 563208 - (400000 + 30000 + 1000 + 100 + 7)
      = 563208 - 400000 - 30000 - 1000 - 100 - 7
      = 163208 - 30000 - 1000 - 100 - 7
      = 133208 - 1000 - 100 - 7
      = 132208 - 100 - 7
      = 132108 - 7
      = 132101
   (e) 321995 - 210860
      = 321995 - (200000 + 10000 + 800 + 60)
      = 321995 - 200000 - 10000 - 800 - 60
      = 121995 - 10000 - 800 - 60
      = 111995 - 800 - 60
      = 111195 - 60
      = 111135
   (f) 134869 - 3768
      = 134869 - (3000 + 700 + 60 + 8)
      = 134869 - 3000 - 700 - 60 - 8
      = 131869 - 700 - 60 - 8
      = 131169 - 60 - 8
      = 131109 - 8
      = 131101
3. (a) 13257 - 12993
                                    (b) 169854 - 99999
      =(13257 + 7) - (12993 + 7)
                                       =(169854 + 1) - (99999 + 1)
                                       = 169855 - 100000
      = 13264 - 13000
      = 264
                                       = 69855
```

(c) 246178 - 199991 (d) 256321 - 198998 = (246178 + 9) - (199991 + 9) = (256321 + 2) - (198998 + 2) = 246187 - 200000 = 256323 - 199000 = 46187 = 57323(e) 284317 - 199999 (f) 300000 - 299999 = (384317 + 1) - (199999 + 1) = 1= 284318 - 200000

Exercise 5.4

- **1.** Auditorium can hold = 50,000 people allowed in Ist phase = 32890 people people allowed in IInd phase = 49910 50000 17110 people we allowed in $-3\ 2\ 8\ 9\ 0$ second phase. 17110 **2.** All the schools have planted plantes = 32880 Sonam's school planted school = 10500 The plants planted by rest of school = 3 2 8 8 0 $-1 \ 0 \ 5 \ 0 \ 0$ Thus 22380 plants were planted by $2 \ 2 \ 3$ 8 0
- rest of the schoools.
 3. The sum of three numbers = 181911
 The two numbers are 112562 and 60151
 Third number = 181911 (112562 + 60151)

$$= 181911 - 172713 = 9198$$

Thus the third number is 9198.

4. Blankets manufactured in on-season = 135730 Blankets manufactured in off-season = 240568 the difference = 3915 $2 \cancel{4} \cancel{9} 5 6 8$ -1 3 5 7 3 01 0 4 8 3 8

Thus the 104838 more blankets are manufactured in off-season.

5. There were wheat bags in godown = 256387 Number of bags were removed = 85639 Number of bags left in the godown = 15513717 $2 \times 3 \times 3 \times 7$ Thus, 170748 bags were left in the $-\frac{85693}{170748}$

CHECK YOURSELF

1. to 4. As per answersheet.

6. Multiplication

Exercise 6.1

As per answersheet.

Exercise 6.2

1.	(a)	$3\ 2\ 4$
		<u>×22</u>
		$\overline{648} \rightarrow (324 \times 2)$
		$+ 6 4 8 0 \rightarrow (324 \times 20)$
		7128
	(c)	657
		$\frac{\times 1\ 0\ 1}{6\ 5\ 7} \rightarrow (657\times 1)$
		$6 5 7 \rightarrow (657 \times 1)$
		$0 \ 0 \ 0 \ 0 \rightarrow (657 \times 0)$
		$+65700 \rightarrow (657 \times 100)$
		66357
	(e)	$7\ 1\ 3\ 4$
	(e)	× 5 7
		$\underbrace{\times 57}{49938} \rightarrow (7134 \times 7)$
		$+356700 \rightarrow (7134 \times 50)$
		$ \begin{array}{r} + 356700 \rightarrow (7134 \times 50) \\ \hline 406638 \end{array} $
		$3\ 2\ 1\ 6$
	(g)	
		$\frac{\times 183}{9648} \rightarrow (3216\times3)$
		$257280 \rightarrow (3216 \times 80)$
		$+ 3 2 1 6 0 0 \rightarrow (3216 \times 100)$
		588528
2.	(a)	490
		×176
		$2940 \rightarrow (490 \times 6)$
		$3 4 3 0 0 \rightarrow (490 \times 70)$
		$+ 49000 \rightarrow (490 \times 100)$
		86240
	(c)	$3\ 2\ 6\ 4$
	(-)	×348
		$2\ 6\ 1\ 1\ 2 \rightarrow (3264 \times 8)$
		$1\ 3\ 0\ 5\ 6\ 0 \rightarrow (3264{\times}40)$
		$+979200 \rightarrow (3264 \times 300)$
		1135872

(b)	$5\ 6\ 7$
	<u>×11</u>
	$\overline{5 \ 6 \ 7} \rightarrow (567 \times 1)$
	$+ 5 6 7 0 \rightarrow (567 \times 10)$
	6237
(d)	2936
	× 2 8 7
	$2\ 0\ 5\ 5\ 2 \rightarrow (2936\times7)$
	$2\ 3\ 4\ 8\ 8\ 0 \rightarrow (2936 \times 80)$
	$+587200 \rightarrow (2936 \times 200)$
	842632
(f)	6724
(1)	× 9 2
	$1 3 4 4 8 \rightarrow (6724 \times 2)$
	$+ 6\ 0\ 5\ 1\ 6\ 0 \longrightarrow (6724 \times 90)$
	618608
(J)	$5\ 2\ 2\ 4$
(h)	× 3 7 4
	$2\ 0\ 8\ 9\ 6 \rightarrow (5224 \times 4)$
	$3 6 5 6 8 0 \rightarrow (5224 \times 70)$
	$+ 1567200 \rightarrow (5224 \times 300)$
	1953776
(b)	782
	× 3 2 5
	$3910 \rightarrow (782 \times 5)$
	$1 5 6 4 0 \rightarrow (782 \times 20)$
	$+234600 \rightarrow (782 \times 300)$
	$2\ 5\ 4\ 1\ 5\ 0$
(d)	9675
()	× 4 5 6
	$5 \ 8 \ 0 \ 5 \ 0 \rightarrow (9675 \times 6)$
	$4 \ 8 \ 3 \ 7 \ 5 \ 0 \rightarrow (9675 \times 50)$
	$+ 3870000 \rightarrow (9675 \times 400)$
	$4\ 4\ 1\ 1\ 8\ 0\ 0$

3.	(a)		$832 \times 3 \over 496$	(b)		$ \begin{array}{r} 1596 \\ \times 3 \\ \overline{4788} \end{array} $
	(c)		$ \begin{array}{r} 3 & 2 \\ \times & 3 & 3 \\ 9 & 6 \\ 9 & 6 & 0 \\ 0 & 5 & 6 \end{array} $	(d)	$ \begin{array}{r} 1 2 5 \\ \times 2 4 \\ \overline{5 0 0} \\ + 2 5 0 0 \\ \overline{3 0 0 0} \end{array} $	$ \begin{array}{r} 3 & 0 & 0 & 0 \\ \times & 1 & \\ \hline 3 & 0 & 0 & 0 \\ \end{array} $
	(e)	$ \begin{array}{r} 2 & 6 & 1 \\ \times & 6 & 7 \\ \overline{) 1 8 2 7} \\ + & 1 & 5 & 6 & 6 & 0 \\ \hline 1 & 7 & 4 & 8 & 7 \end{array} $	$ \begin{array}{r} 17487 \\ \times 7 \\ 122409 \end{array} $	(f)	$ \begin{array}{r} 45 \\ \times 20 \\ 45 \\ 0000 \\ +90200 \\ 9065 \end{array} $	$ \begin{array}{c} \frac{1}{1} & \times 6 \\ 543906 \\ 0 \\ 0 \end{array} $
4.	(a)	$\begin{array}{r} 2 4 2 \\ \times 9 \\ \hline 2 1 7 8 \end{array}$	$ \begin{array}{r} 2 1 7 8 \\ \times 7 6 \\ \hline 1 3 0 6 8 \\ + 1 5 2 4 6 0 \\ \hline 1 6 6 5 2 8 \end{array} $		$ \begin{array}{r} 1 \ 6 \ 5 \ 5 \ 2 \\ \times \ 1 \ 0 \\ 1 \ 6 \ 5 \ 5 \ 2 \\ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \\ 1 \ 6 \ 5 \ 5 \ 2 \ 8 \ 0 \\ 1 \ 6 \ 7 \ 1 \ 8 \ 3 \ 2 \\ \end{array} $	$ \frac{1}{8} $ 0 0
	(b)	$ \begin{array}{r} 670 \\ \times 20 \\ 000 \\ +13400 \\ 13400 \end{array} $	$ \begin{array}{r} 1 3 4 0 0 \\ \times 18 \\ \overline{107200} \\ + 1 3 4 0 0 0 \\ \underline{241200} \end{array} $	(c)	$ \begin{array}{r} 18 \\ \times 6 \\ 108 \end{array} $	
	(d)	$ 521 \\ \times 23 \\ \overline{1563} \\ +10420 \\ \overline{11983} $	$\begin{array}{r}11983\\ \times 5\\ 59915\end{array}$		5991 \times 23966	5 4
	(e)	$ \begin{array}{r} 1 9 0 \\ \times 1 1 \\ \overline{190} \\ + 1900 \\ \underline{2090} \end{array} $	$\begin{array}{r} 2\ 0\ 9\ 0\\ \times\ 9\\ \hline 1\ 8\ 8\ 1\ 0\end{array}$		$\begin{array}{r}18810\\\times3\\56430\end{array}$	3
	(f)	$ \begin{array}{r} 1 4 \\ \times 1 2 \\ 2 8 \\ + 1 4 0 \\ \hline 1 6 8 \end{array} $	$ \begin{array}{r} 168 \\ \times 92 \\ \overline{336} \\ +15120 \\ 15456 \end{array} $ 138		$ \begin{array}{r} 1 5 4 5 6 \\ \times 1 7 \\ 1 0 8 1 9 2 \\ 1 5 4 5 6 0 \\ 2 6 2 7 5 2 \end{array} $	

Exercise 6.3

1.	(a) $11 \times 10 + 3 \times 5 - 18 \times 9$ = $110 + 15 - 162$ = $125 - 162 = -37$ (c) $104 - 13 \times 6 + 23 - 5 \times 6$ = $104 - 78 + 23 - 30$		$15 \times 9 + 12 \times 6 - 20 \times 10$ = 135 + 72 - 200 = 207 - 200 = 7 520 - 15 \times 7 - 8 \times 7 - 12 \times 6 = 520 - (105 + 56 + 72)
	= 104 + 23 - 78 - 30 = 127 - 108 = 19 (e) 753 × 5 - 319 + 272 - 880 = 3765 + 272 - 319 - 880 = 4037 - 1199 = 2838	(f)	= 520 - 233 = 287 2375 - 642 + 172 × 9 - 656 = 2375 + 1548 - 642 - 656 = 3923 - 1298 = 2625
2.	She will take time to paint such	n 45 j	portraits = $\begin{array}{r} 1980 \\ \times 45 \\ \hline 9900 \end{array}$
3.	Thus, Suhani will take 89100 m such 45 portraits Each barrel can hold petrol = 90 Petrol can be filled in 6590 barr	00 lit	re
	Thus, 591300 litres of petrol can filled in 6590 such barrels.	n be	$ \begin{array}{r} 0 \ 0 \ 0 \ 0 \\ $
4.	There are students in college = Each student has number of boo Each book has number of image Number of total images = 90 × 4	ok = es = 1	$ \begin{array}{c} $
5.	₹300 back	r Tris r = ₹€ 0	sha and Reema for ₹1350 ×2

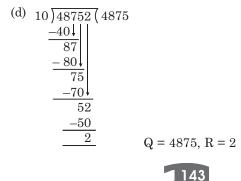
- **6.** School has students = 2146Number of school buses = 14Each bus can carry students = 85Total number of students travel by bus = 14× 8 5 7 0 Number of students travel by other +1120means of transport = 2146 - 1190 = 9561190 Thus, 956 students travel by other means of transport. ₹3215 **7.** First brother earns = × 1 2 6 4 3 0 +32150₹38580 per year Second brother earns = ₹ 3576 per month ₹3576 <u>×</u>12 7152+35760₹42912 per year Thus, they both earn per year = ₹ 38580 + ₹ 42912 = ₹ 81492 8. Number of bags = 63Each bag have coins = 352there are total number of coins = 352 $\times 63$ 1056 +21120 Thus, there are 22176 coins in all. 22176 **CHECK YOURSELF** 1. to 4. As per answersheet. 7. DIVISION 1. As per answersheet. **2.** (a) 11) 3458 ($314 \rightarrow \text{Quotient}$ (b) 13) 6731 (517→Quotient -33 -6515 $\overline{23}$ -11 -13 101
 - 101 -91 $10 \rightarrow \text{Remainder}$ Q = 517, R = 10

140

4 → Remainder

Q = 314, R = 4

Page 30 of 105


	(c) 12) $\overrightarrow{6843}$ (570 \rightarrow G $\overrightarrow{-60\downarrow}$ $\overrightarrow{84}$ $\overrightarrow{-84\downarrow}$ $\overrightarrow{03}$ \rightarrow Remain		26) $\overline{5937}$ (228 \rightarrow Quotient $-52\downarrow$ $\overline{73}$ $-52\downarrow$ 217 -208 $\overline{9}$ \rightarrow Remainder
	Q = 570, R = 3 (e) 15) 3977 (265 → $-30\downarrow$ 97 -90↓ 77		$Q = 228, R = 9$ $24 \overline{\smash{\big)}\ 8264} (344 \rightarrow \text{Quotient})$ $\underline{-72\downarrow} \\ 106 \\ \underline{-96\downarrow} \\ 104$
3.	$\begin{array}{r} -75\\ \hline 2 \rightarrow \text{Remain}\\ Q = 265, R = 2 \end{array}$ (a) 25) 317 (12 \rightarrow G	1	$\frac{-96}{8} \rightarrow \text{Remainder}$ $Q = 344, R = 8$
	$\begin{array}{c} -25 \downarrow \\ \hline -25 \downarrow \\ \hline 67 \\ \hline -50 \\ \hline 17 \end{array} \rightarrow \text{Remain}$	Dividend 317 = 25	= Quotient × Divisor + Remainder 5 × 12 + 17 00 + 17
	(b) $31) 2190 (70) \\ -217 \downarrow 20 \\ Q = 70, R = 20$	Verification : Dividend = Qu 2190 = 70 × 31	otient × Divisor + Remainder + 20 20
	(c) $13 \overline{)8683(667)}$ $-78 \downarrow$ $88 \downarrow$ $-78 \downarrow$ 103 -91 12	Verification :	otient × Divisor + Remainder 3 + 12 12 Hence verified
	(d) 45) 7809(173 $-45\downarrow$ 330 $-315\downarrow$ 159 -135 -24	Verification : Dividend = Qu 7809 = 173 × 4 7809 = 7785 + 7809 = 7809 Q = 173,R = 24	otient × Divisor + Remainder 5 + 24 24 Hence verified

	(e) (f)	$11 \overline{\smash{\big)}} \begin{array}{c} 3399(309 \\ \underline{-33\downarrow\downarrow} \\ 99 \\ \underline{-99} \\ \underline{-09} \\ 0 \\ \end{array}$ $Q = 309, R = 0$ $58 \overline{\smash{\big)}} \begin{array}{c} 4296(74 \\ \underline{-406\downarrow} \\ 236 \\ \underline{-232} \\ \underline{-4} \\ 4 \\ \end{array}$ $Q = 74, R = 4$	Divi 3399 3399 Hen Ver Divi 4296 4296	ification : dend = Quotient × $\theta = 309 \times 11 + 0$ $\theta = 3399 + 0$ $\theta = 3399$ ce verified ification : dend = Quotient × $\delta = 74 \times 58 + 4$ $\delta = 4292 + 4$ $\delta = 4296$ ce verified		
4.		$\begin{array}{c} Q = 74, R = 4 \\ 15 \overline{\smash{\big)}14320(954)} \\ \underline{-135\downarrow} \\ 82 \\ \underline{-75\downarrow} \\ 70 \\ \underline{-60} \\ 10 \\ Q = 954, R = 10 \\ 12 \overline{\smash{\big)}25224(2102)} \\ \underline{-24\downarrow} \\ 12 \\ \underline{-12\downarrow\downarrow} \\ 24 \\ \underline{-24} \\ \underline{-24} \\ 0 \\ Q = 2102, R = 0 \end{array}$	(b)		(c) (f)	$\begin{array}{c} -178 \downarrow \\ \hline 792 \\ -712 \downarrow \\ \hline 803 \\ \hline 2 \\ Q = 289, R = 2 \end{array}$
	(g)	$\begin{array}{c c} 47 \overline{)59671} (1269 \\ \hline -47 \downarrow \\ 126 \\ \hline -94 \downarrow \\ \hline 327 \\ -282 \downarrow \\ \hline 451 \\ -423 \\ \hline 28 \\ Q = 1269, R = 28 \end{array}$		$58)32641(562)$ $-290\downarrow 364 -348\downarrow -348\downarrow -161 -116 -116 -45$ $Q = 562, R = 45$		

Page 32 of 105

Exercise 7.2				
1. (a) $10 \overline{)753} (75) (75) (75) (75) (75) (75) (75) (75)$	(b)	$10 \overline{\smash{\big)}9870} (987) $	c)	1) 920 (920) -94 2 -24 0 Q = 920, R = 0
(d) $100 \overline{\smash{\big)}\ 632} (6) -604 \overline{\ 32}$ Q = 6, R = 32	(e)	$100 \overline{\smash{\big)}\ 5601} (56 \ (56$	f)	$100 \overline{)92003(920)} \\ -900 \downarrow \\ \hline 200 \\ -200 \downarrow \\ \hline -200 \downarrow \\ \hline 3 \\ Q = 920, R = 3$
(g) $1000 \overline{)7830} (7) = \frac{-7000}{830}$ Q = 7, R = 830	(h)	$1000 \overline{)95028} (95) - \frac{9000 4}{5028} - \frac{5000}{28} - $		
2. (a) $100 \overline{\smash{\big)}4895}(48)$ $-400 \downarrow$ $\overline{895}$ -800 $\overline{95}$ Q = 48, R = 95	(b)	1000)38492 (38) (38) (38) (38) (38) (38) (38) (38)	c)	$ \begin{array}{c c} 10 \overline{)12868(1286)} \\ -10 \overline{10} \\ \hline 28 \\ -20 \overline{10} \\ \hline 86 \\ -80 \overline{10} \\ \hline 68 \\ \hline -60 \\ \hline 8 \\ \hline 8 \\ \hline \end{array} $
				$\frac{8}{0} = 1000 \text{ P} = 0$

Q = 1286, R = 8

3.	(a)	$20) 6000 (300) \\ -6011 \\ 00 \\ -00 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	(b)	$40) 8400 (210) \\ -80 \downarrow \\ 40 \\ -40 \downarrow \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	(c)	$ \begin{array}{r} 90 \overline{\smash{\big)}\ 4200} (\ 46 \\ \underline{-360 \downarrow} \\ 600 \\ \underline{-540} \\ 60 \\ \hline 60 \\ \end{array} $
	(d)	Q = 300, R = 0 30) 825 (27 -60)	(e)	Q = 210, R = 0 30)700 (23 -601	(f)	<u></u>
						$\begin{array}{c} 40\\ -40\\ \hline 0\\ Q = 41, R = 0 \end{array}$
	(g)	$ \begin{array}{c c} 40 & 5250 \\ \hline & -40 \\ \hline & 125 \\ \hline & -120 \\ \hline & 50 \\ \end{array} $	(h)	$ \begin{array}{r} 60 \overline{\smash{\big)}24476}(407 \\ -240 \overline{\smash{\big)}} \\ 476 \\ -420 \\ 56 \\ \end{array} $		
		$Q = \frac{\frac{-40}{10}}{131, R} = 10$		Q = 407, R = 56		
4.	(a)	$\begin{array}{c} 10 \overline{\smash{\big)}} & \underline{62} & (6 \\ \underline{-60} \\ \underline{2} \end{array}$	(b)	$500) 50600 (101) \\ -500 \downarrow \downarrow \\ 600 \\ -500 \\ 100 \\ 100 \\ -500 \\ 100 \\ -500 \\ -$	(c)	$ \begin{array}{r} 400 \overline{\smash{\big)}\ 5300(13)} \\ \underline{-400 \downarrow} \\ 1300 \\ \underline{-1200} \\ 100 \\ \end{array} $
		Q = 6, R = 2		Q = 101, R = 100		Q = 13, R = 100
	(d)	$700 \overline{\smash{\big)} 9200(13)} \\ \underline{-700 \downarrow} \\ \underline{2200} \\ \underline{-2100} \\ \underline{100} \\ \end{array}$	(e)	900) 14500 (16 -900) 5500 -5400 100	(f)	$ \begin{array}{c c} 400 \overline{\smash{\big)}60800} (152 \\ \underline{-400 \downarrow} \\ 2080 \\ \underline{-2000 \downarrow} \\ 800 \\ \underline{-800} \\ 0 \end{array} $
		Q = 13, R = 100		Q = 16, R = 100		$Q = \overline{152, R} = 0$
	(g)	$ \begin{array}{r} 2000 \overline{\smash{\big)} 87000} (43) \\ \underline{-8000 \downarrow} \\ \overline{7000} \\ \underline{-6000} \\ \overline{1000} \end{array} $	(h)	$ \begin{array}{r} 6000 \overline{\smash{\big)}99000(1)} \\ -6000 \overline{\smash{\big)}} \\ \overline{39000} \\ -36000 \\ \overline{3000} \end{array} $.6	
		Q = 43, R = 1000		Q = 16, R = 30	00	

Exercise 7.3		
1. (a) $122 \overline{\smash{\big)}\ 732} (6$ (b) $-732 \overline{0}$ Q = 6, R = 0	$251 \overline{\smash{\big)}\ 4609} (18 \qquad \text{(c)} \\ \underline{-251 \downarrow} \\ 2099 \\ \underline{-2008} \\ 91 \\ Q = \overline{18}, R = 91$	$416) \overline{3790} (9) = \frac{-3744}{46}$ $Q = 9, R = 46$
(d) $125) 6825 (54) (e) -625 \downarrow 575 -500 75 0 54 55$	$\frac{-1540}{150}$	$ \begin{array}{r} 113 \overline{\smash{\big)}} 8927 (79 \\ -791 \downarrow \\ 1017 \\ -1017 \\ 0 \\ \hline \hline \hline 0 \\ \hline \hline 0 \\ \hline \hline \hline 0 \\ \hline \hline 0 \\ \hline \hline \hline 0 \\ \hline \hline \hline \hline 0 \\ \hline \hline \hline \hline \hline 0 \\ \hline \hline \hline \hline 0 \\ \hline \hline$
Q = 54, R = 75 (g) $431\overline{)22843}(53$ (h) $-2155\downarrow$ 1293 -1293 Q = 53, R = 0	$Q = 4, R = 150$ $854 \overline{)18788(22)}$ $-1708 \downarrow$ 1708 -1708 $Q = 22, R = 0$	Q = 79, R = 0
2. (a) $_{683}\overline{)53289}(_{78}$ (b) $-4781\downarrow$ 5479 -5464 15	$ \begin{array}{r} -6902 \downarrow \\ \hline 5306 \\ -4930 \\ \hline 376 \\ \end{array} $	$ \begin{array}{c c} -918 \downarrow \\ \hline 694 \\ -612 \downarrow \\ \hline 823 \\ -765 \\ \hline 58 \end{array} $
Q = 78, R = 15 (d) $537\overline{)392453(730)}$ (e) -3759 1655 -1611 -443	$Q = 75, R = 376$ $775 \overline{)326054}(420 \text{(f)}$ $-3100 \downarrow \\ 1605 \\ -1550 \downarrow \\ 554$	$Q = 645, R = 58$ $362 \overline{\smash{\big)}480961}(1328$ $\underline{-362 \downarrow}_{1189} \\ \underline{-1086 \downarrow}_{1036} \\ \underline{-724 \downarrow}_{3121}$
Q = 730, R = 443	Q = 420, R = 554	$\frac{-2896}{225}$ Q = 1328, R = 225

```
3. (a) 205) 23658(115 Checking:
             205
                         Dividend = Quotient \times Divisor + Remainder
              315
                         23658 = 115 \times 205 + 83
             -205
                         23658 = 23575 + 83
              1108
                         23658 = 23658
             -1025
                83
                         Hence verified
       Q = 115, R = 83
   (b) 784 \overline{) 84802(108)} Checking :
            -784↓↓
                         Dividend = Quotient \times Divisor + Remainder
              6402
                         84802 = 108 \times 784 + 130
             -6272
                         84802 = 84672 + 130
                130
                         84802 = 84802
       Q = 108, R = 130 Hence verified
   (c) 314 91624(291 Checking:
            -628
                         Dividend = Quotient \times Divisor + Remainder
             2882
                         91624 = 291 \times 314 + 250
            -2826
                         91624 = 91374 + 250
                564
                         91624 = 91624
              -314
                         Hence verified
               250
       Q = 291, R = 250
   (d) _{485} 99000(204 Checking:
                         Dividend = Quotient × Divisor + Remainder
            -970↓↓
              2000
                         99000 = 204 \times 485 + 60
             -1940
                         99000 = 98940 + 60
                 60
                         99000 = 99000
       Q = 204. R = 60 Hence verified
```

Exercise-7.4

1. (a) In order to do such sums, take the following steps :

Step 1 : First complete all 'of' operations.

- Step 2 : Next do the division (\div)
- Step 3 : Now do the multiplications (×).
- Step 4 : (i) Add the numbers with '+' signs. The first number in the sum does not have a sign. It is considered to have '+' signs.
 - (ii) Add the numbers with '-' signs.
- Step 5: Subtract the two sums found in step 4 and get the simplified number.

 $= 220 + 24 \times 60 - 1089 \div 99$ $= 220 + 24 \times 60 - 11$ [:: $1089 \div 99 = 11$] = 220 + 1440 - 11 [:: $24 \times 60 = 1440$] [:: 220 + 1440 = 1660]= 1660 - 11= 1649(b) $6240 \div 4 \times 20 + 18 - 52$ $= 1560 \times 20 + 18 - 52$ $[:: 6240 \div 4 = 1560]$ = 31200 + 18 - 52 $[:: 1560 \times 20 = 31200]$ = 31218 - 52[:: 31200 + 18 = 31218]= 31166[:: 31218 - 52 = 31166](c) $1665 \times 8 \div 5$ $= 1665 \times 1.6$ $[:: 8 \div 5 = 1.6]$ = 2664 $[:: 1665 \times 1.6 = 2664]$ (d) $4321 + 312 \times 16 \div 8 - 164$ $= 4321 + 312 \times 2 - 164$ $[:: 16 \div 8 = 2]$ = 4321 + 624 - 164 $[:: 312 \times 2 = 624]$ = 4945 - 164[:: 4321 + 624 = 4945]= 4781[:: 4945 - 164 = 4781](e) $3600 \div 90 \times 9 + 5 \times 24 - 120 \div 6$ $=40 \times 9 + 5 \times 24 - 20$ $[:: 3600 \div 90 = 40, 120 \div 6 = 20]$ = 360 + 120 - 20 $[:: 40 \times 9 = 360, 5 \times 24 = 120]$ = 480 - 20[:: 360 + 120 = 480]= 460[:: 480 - 20 = 460](f) $8000 + 2000 \div 20$ of 5 - 1500 $= 8000 + 2000 \div 100 - 1500$ [:: 20 of 5 = 100] = 8000 + 20 - 1500 $[:: 2000 \div 100 = 20]$ = 8020 - 1500[:: 8000 + 20 = 8020]= 6520[:: 8020 - 1500 - 6520](g) $840 + 16 \div 4 - 280 \div 10 + 53$ = 840 + 4 - 28 + 53 $[:: 16 \div 4 = 4, 280 \div 10 = 28]$ = 897 - 28[:: 840 + 4 + 53 = 897]= 869[:: 897 - 28 = 869](h) $6512 - 798 \times 3 \div 3 - 7$ of 8 $= 6512 - 798 \times 3 \div 3 - 56$ [:: 7 of 8 = 56] $= 6512 - 798 \times 1 - 56$ $[:: 3 \div 3 = 1]$ = 6512 - 798 - 854 $[:: 798 \times 1 = 798]$ = 6512 - 854[:: 798 + 56 = 854]= 5658[:: 6512 - 854 = 5658]

Exercise-7.5

LAGI	0136-7.0			
1.	(a) The greatest	4-digit number =	: 9999	
	$9999 \div 73$	$9999 \div 36$	$9999 \div 85$	$9999 \div 24$
	$ \begin{array}{c} -73 \downarrow \\ 269 \\ -219 \downarrow \\ 509 \\ -438 \end{array} $	$36) 9999 (277) -72 \downarrow 279 -252 \downarrow 279 -252 279 -252 27$	$ \begin{array}{c c} 85 & 9999 & (117 \\ $	$\begin{array}{c c} -96 \downarrow \\ \hline 39 \\ -24 \downarrow \\ \hline 159 \\ -144 \end{array}$
	71		54	15
			Q = 117, R = 54	Q = 416, R = 15
(b)	The smallest 4-d	igit number = 10	00	
	$1000 \div 72$	$1000 \div 65$	$1000 \div 30$	$1000 \div 25$
	$72 \overline{\smash{\big)}\ 1000} (13)$ $\underline{-72 \downarrow}$ 280	$ \begin{array}{r} 65 \overline{\smash{\big)}\ 1000} (15 \\ \underline{-65 \downarrow} \\ 350 \end{array} $	$30 \overline{)1000} (33) \\ -90 \downarrow \\ 100$	25)1000(40) $-100\downarrow$ 00
	$\frac{-216}{64}$	-325 25	-90 10	00
	Q = 13, R = 64	Q = 15, R = 25	Q = 33, R = 10	Q = 40, R = 0
(c)	The greatest 3-d	igit number = 999	9	
	$999 \div 68$	$999 \div 18$	$999 \div 34$	$999 \div 45$
	$ \begin{array}{r} 68 \overline{\smash{\big)}999} (14 \\ \underline{-68 \downarrow} \\ 319 \\ \underline{-272} \\ 47 \\ \end{array} $	$ \begin{array}{r} 18 \overline{\smash{\big)}} 999 (55 \\ \underline{-90 \downarrow} \\ 99 \\ \underline{-90} \\ 99 \\ \underline{-90} \\ 9 \\ 9 \\ 9 \\ \end{array} $	$ \begin{array}{r} 34 \overline{\smash{\big)}999} (29 \\ \underline{-68 \downarrow} \\ 319 \\ \underline{-306} \\ 13 \end{array} $	$ \begin{array}{r} 45 \overline{\smash{\big)}999}(22 \\ \underline{-90\downarrow}\\99 \\ \underline{-90}\\99 \\ \underline{-90}\\99 \\ \underline{-90}\\99 \\ \underline{-90}\\9 \\\underline{-90}\\9 \\1 \\\underline{-90}\\9 \\1 \\1 \\1 \\1 \\1 \\1 \\1 \\1 \\1 \\1 \\1 \\1 \\1 $
	Q = 14, R = 47	Q = 55, R = 9	Q = 29, R = 13	Q = 22, R = 9
2.	6288 flowers are	packed in crates	= 8	
	Each crates have	e flowers = $8 \int 6$	288(786	

) 6288(786 $\begin{array}{r} -56 \\ -64 \\ -64 \\ -48 \\ -48 \\ 0 \\ \end{array}$

Thus, each crates wil have 786 flowers.

3. 7 tables cost = ₹8085 1 table cost = 7 $\overline{)8085(1155)}$ $\begin{array}{r} -7\downarrow\\ \hline 10\\ \hline -7\downarrow\\ \hline 38\\ -35 \end{array}$

$$38 \\ -35 \\ 35 \\ -35$$

Х

Thus, one table cost = ₹1155.

4. 3696 tins are packed in 7 containers Each container have number of tins = 7) 3696(528)

 $\begin{array}{c|c} -35 \downarrow \\ \hline 19 \\ -14 \downarrow \\ \hline 56 \\ -56 \\ \hline \times \\ \end{array}$

Thus, each container have 528 number of tins.

23 shirts cost = ₹ 8832
 1 shirt cost = 23 \ 8832

shirt cost = 23) 8832(384

$$\begin{array}{r}
-69 \downarrow \\
193 \\
-184 \downarrow \\
92 \\
\underline{-92} \\
\times \\
\end{array}$$

Thus, each shirt cost ₹ 384.

CHECK YOURSELF

1. to 4. As per answersheet.

Exercise-8

1.	1	2	3	4	5	6	7	8	9	10	11	12	13
	14	15	16	17	18	19	20	21	22	23	24	25	26
	27	28	29	30	31	32	33	34	35	36	37	38	39
	40	41	42	43	44	45	46	47	48	49	50	51	52

Multiples of 4 are those number which are divisible by 4. 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48 and 52 are multiples of 4.

2.

2. (a)

$$(3 + 4 + 1 = 8) (4 + 5 + 1 = 10) (5 + 6 + 1 = 12) (19 + 23 + 1 = 43) (10 + 12 + 1 = 23)$$
(b) $16 - 3 = 13, 13 - 3 = 10, 10 - 3 = 7$
 $18 - 3 = 15, 15 - 3 = 12, 12 - 3 = 9$
 $20 - 3 = 17, 17 - 3 = 14, 14 - 3 = 11$
 $22 - 3 = 19, 19 - 3 = 16, 16 - 3 = 13$
 $24 - 3 = 21, 21 - 3 = 18, 18 - 3 = 15$
 $26 - 3 = 23, 23 - 3 = 20, 20 - 3 = 17$
3. (a) $6 \times 2 - 1 = 11$
 $5 \times 2 - 1 = 9$
 $3 \times 2 - 1 = 5$
 $9 \times 2 - 1 = 17$
 $8 \times 2 - 1 = 15$
 $9 \times 2 - 1 = 17$
 $8 \times 2 - 1 = 15$
 $9 \times 2 - 1 = 17$
 $8 \times 2 - 1 = 15$
 $9 \times 2 - 1 = 15$
 $9 \times 2 - 1 = 17$
 $8 \times 2 - 1 = 15$
 $9 \times 2 - 1 = 17$
 $8 \times 4 = 12$
 $12 + 4 = 16$
 $17 + 4 = 21$
 $23 + 4 = 27$
4. $1 + [2] + [3] + 4 = 10$
 $2 + [3] + [4] + 5 = 14$
 $3 + [4] + [5] + 6 = 18$
 $4 + 5 = 9 \times 2$
 $4 + [5] + [6] + 7 = 22$
 $4 + [5] + [6] + 7 = 22$
 $5 \times 25 = [6] 25$
 $1 \times 1 + 1 = 2$
 $25 \times 25 = [6] 25$
 $1 \times 1 + 1 = 2$
 $25 \times 25 = [6] 25$
 $1 \times 1 + 1 = 2$
 $25 \times 25 = [6] 25$
 $1 \times 1 + 1 = 2$
 $25 \times 25 = [6] 25$
 $3 \times 3 = 12$
 $4 \times 4 + 5 = 12$
 $25 \times 25 = [6] 25$
 $3 \times 3 = 12$
 $4 \times 4 + 5 = 12$
 $25 \times 25 = [6] 25$
 $3 \times 3 + 3 = 12$
 $45 \times 45 = [20] 25$
 $1 \times 1 + 1 = 2$
 $25 \times 25 = [6] 25$
 $3 \times 3 + 3 = 12$
 $45 \times 45 = [20] 25$
 $4 \times 4 + 4 = 20$
 $55 \times 55 = [30] 25$
 $5 \times 5 + 5 = 30$
 $65 \times 65 = [42] 25$
 $7 \times 7 + 7 = 56$

6.	$11 \times 11 = 121$	$1 \times 1 = 1, 1 + 1 = 2$
	$21 \times 21 = 441$	$2 \times 2 = 4, 2 + 2 = 4$
	$31 \times 31 = 961$	$3 \times 3 = 9, 3 + 3 = 6$
	$41 \times 41 = 1681$	$4 \times 4 = 16, \ 4 + 4 = 8$
	$51 \times 51 = 2601$	$5 \times 5 = 25, 5 + 5 = 10 = 26$
	$61 \times 61 = 3721$	$6 \times 6 = 36, 6 + 6 = 12 = 37$
	$81 \times 81 = 6561$	$8 \times 8 = 64, 8 + 8 = 16 = 65$

CHECK YOURSELF

1.	(a)	1, $1 + 1 = 2$, $2 + 1 = 3$, $3 + 1 = 4$, $4 + 1 = 5$
		Similarly,
		8 + 1 = 9, 9 + 1 = 10, 10 + 1 = 11, 11 + 1 = 12, 12 + 1 = 13
	(b)	3, 3 + 3 = 6, 6 + 3 = 9, 9 + 3 = 12, 12 + 3 = 15
		Similarly,
		21 + 3 = 24, 24 + 3 = 27, 27 + 3 = 30, 30 + 3 = 33, 33 + 3 = 36
	(c)	25 - 2 = 23, 23 - 2 = 21, 21 - 2 = 19, 19 - 2 = 17
		Similarly,
		15 - 2 = 13, $13 - 2 = 11$, $11 - 2 = 9$, $9 - 2 = 7$, $7 - 2 = 5$
	(d)	118, 118 - 2 = 116, 116 - 2 = 114, 114 - 2 = 112
		Similarly,
		108 - 2 = 106, 106 - 2 = 104, 104 - 2 = 102, 102 - 2 = 100,
		100 - 2 = 98
2.	(a)	According to given pattern
		3 + 4 + 5 + 6 = 18 [(4 + 5) × 2 = 18]
		4 + 5 + 6 + 7 = 22 [(5 + 6) × 2 = 22]
		5 + 6 + 7 + 8 = 26 [(6 + 7) × 2 = 26]
	(b)	According to given pattern
		$1 + 3 + 5 + 7 = 16 = 4 \times 4$
		$1 + 3 + 5 + 7 + 9 = 25 = 5 \times 5$
		$1 + 3 + 5 + 7 + 9 + 11 = 36 = 6 \times 6$
	(c)	According to given pattern (d) According to given pattern
		$88 - 28 = 60 \qquad \qquad 3 \times 101 = (3 \times 100) + 3 = 303$
		$87 - 27 = 60 \qquad 4 \times 101 = (4 \times 100) + 4 = 404$
		$86 - 26 = 60 \qquad 5 \times 101 = (5 \times 100) + 5 = 505$

9. Estimation

Exercise 9.1

1.	(a)	75 is estimated to 80 to the nearest 10.96 is estimated to 100 to the nearest 10.	[∵ 5 [∵ 6	5] 5]
		So, estimated sum = $80 + 100 = 180$		
		Actual sum = $75 + 96 = 171$		
	(b)	257 is estimated to 260 to the nearest 10.	[:: 7	5]
		230 is estimated to 230 to the nearest 10.	[::0	5]
		So, estimated sum = $260 + 230 = 490$		
		Actual sum = $257 + 230 = 487$		
	(c)	310 is estimated to 310 to the nearest 10.	[:: 0	5]
		67 is estimated to 70 to the nearest 10.	[::0	5]
		So, estimated sum = $310 + 70 = 380$		
	(1)	Actual sum = $310 + 67 = 377$	5 0	~1
	(d)	4182 is estimated to 4180 to the nearest 10.	[::2	5]
		338 is estimated to 340 to the nearest 10.	[::8	5]
		So, estimated sum = $4180 + 340 = 4520$		
	(-)	Actual sum = 4182 + 338 = 4520	[0	F 1
	(e)	2020 is estimated to 2020 to the nearest 10. 6005 is estimated to 6010 to the nearest 10.	[::0	5] 51
		So, estimated sum = $2020 + 6010 = 8030$	[::5	5]
		Actual sum = $2020 + 6005 = 8025$		
	(f)	234 is estimated to 230 to the nearest 10.	[::4	5]
	(1)	65 is estimated to 70 to the nearest 10.	[· 4 [::5	-
		44 is estimated to 40 to the nearest 10.	[: 0 [::4	5]
		So, estimated sum = $230 + 70 + 40 = 340$	[• 1	0]
		Actual sum = $234 + 65 + 44 = 343$		
2.	(a)	438 is estimated to 400 to the nearest 100.	[:: 38	50]
	(/	534 is estimated to 500 to the nearest 100.	[:: 34	-
		So, estimated sum = $400 + 500 = 900$	ι -]
		Actual sum = $438 + 534 = 972$		
	(b)	584 is estimated to 600 to the nearest 100.	[:: 84	50]
		592 is estimated to 600 to the nearest 100.	[:: 92	50]
		So, estimated sum = $600 + 600 = 1200$		
		Actual sum = $584 + 592 = 1176$		

	$\langle \rangle$		F 00	501
	(C)	3896 is estimated to 3900 to the nearest 100. 760 is estimated to 800 to the nearest 100.	[:: 96	50]
			[:: 60	50]
		So, estimated sum = $3900 + 800 = 4700$ Actual sum = $3896 + 760 = 4656$		
	(\mathbf{d})	6569 is estimated to 6600 to the nearest 100.	[CO	50]
	(u)	178 is estimated to 200 to the nearest 100.	[:: 69	50] 50]
		3594 is estimated to 3600 to the nearest 100.	[:: 78	-
		So, estimated sum = $6600 + 200 + 3600 = 10400$	[∵94	50]
		Actual sum = $6569 + 178 + 3594 = 10341$	0	
3.	(a)	Actual sum $-6509 + 178 + 5594 - 10541$ 350 is estimated to 400 to the nearest 100.	[:: 50	50]
э.	(a)	286 is estimated to 300 to the nearest 100.	-	-
		So, estimated to 500 to the hearest 100. So, estimated difference = $400 - 300 = 100$	[∵86	50]
		Actual difference = $350 - 286 = 64$		
	(h)	527 is estimated to 500 to the nearest 100.	[::27	50]
	(0)	293 is estimated to 300 to the nearest 100.	[: 27	50] 50]
		So, estimated difference $= 500 - 300 = 200$	[. 30	00]
		Actual difference = $527 - 293 = 234$		
	(c)	6991 is estimated to 7000 to the nearest 100.	[::91	50]
	(0)	2763 is estimated to 2800 to the nearest 100.	[:: 63	50] 50]
		3280 is estimated to 3300 to the nearest 100.	[:: 80	50] 50]
		So, estimated difference = $7000 - 2800 - 3300$	[. 00	00]
		= 4200 - 3300 = 900		
		Actual difference = $6991 - 2763 - 3280$		
		= 4228 - 3280 = 948		
	(d)	2120 is estimated to 2100 to the nearest 100.	[:: 20	50]
	()	126 is estimated to 100 to the nearest 100.	[:: 26	50]
		632 is estimated to 600 to the nearest 100.	[:: 32	50]
		So, estimated difference = $2100 - 100 - 600$		
		= 2000 - 600 = 1400		
		Actual difference = $2120 - 126 - 632$		
		= 1994 - 632 = 1362		
	(e)	7521 is estimated to 7500 to the nearest 100.	[::21	50]
		6217 is estimated to 6200 to the nearest 100.	[::17	50]
		602 is estimated to 600 to the nearest 100.	[::2	50]
		So, estimated difference = $7500 - 6200 - 600$		
		= 1300 - 600 = 700		
		Actual difference = $7521 - 6217 - 602$		
		= 1304 - 602 = 702		

C.B.R.MODERN SR.SEC.SCHOOL BAHALA REWARI Page 43 of 105

(f) 3604 is estimated to 3600 to the nearest 100. [:: 04]501 234 is estimated to 200 to the nearest 100. [:: 34 50]580 is estimated to 600 to the nearest 100. [:: 80 50] So, estimated difference = 3600 - 200 - 600= 3400 - 600 = 2800Actual difference = 3604 - 234 - 580= 3370 - 580 = 27904. (a) 7842 is estimated to 8000 to the nearest 1000. 500] [:: 842 6145 is estimated to 6000 to the nearest 1000. [:: 145]500] So, estimated difference = 8000 - 6000 = 2000Actual difference = 7842 - 6145 = 1697(b) 7621 is estimated to 8000 to the nearest 1000. [:: 621]500] 3202 is estimated to 3000 to the nearest 1000. [:: 202]500] So, estimated difference = 8000 - 3000 = 5000Actual difference = 7621 - 3202 = 4419(c) 7450 is estimated to 7000 to the nearest 1000. [:: 450 500] 3780 is estimated to 4000 to the nearest 1000. [:: 780 500] 1600 is estimated to 2000 to the nearest 1000. [:: 600 500] So, estimated difference = 7000 - 4000 - 2000= 3000 - 2000 = 1000Actual difference = 7450 - 3780 - 1600= 3670 - 1600 = 2070(d) 9375 is estimated to 9000 to the nearest 1000. [: 375 500] 6276 is estimated to 6000 to the nearest 1000. [:: 276]500]1051 is estimated to 1000 to the nearest 1000. [:: 51]500]So, estimated difference = 9000 - 6000 - 1000= 3000 - 1000 = 2000Actual difference = 9375 - 6276 - 1051= 3099 - 1051 = 2048(e) 88099 is estimated to 88000 to the nearest 1000. [∵99 500]37108 is estimated to 37000 to the nearest 1000. [::108]500]25961 is estimated to 26000 to the nearest 1000. [:: 961 500] So, estimated difference = 88000 - 37000 - 26000= 51000 - 26000 = 25000Actual difference = 88099 - 37108 - 25961 = 50991 - 25961 = 25030

C.B.R.MODERN SR.SEC.SCHOOL BAHALA REWARI Page 44 of 105

(f) 66980 is estimated to 67000 to the nearest 1000. [::980 500] 5832 is estimated to 6000 to the nearest 1000. [::832 500] 1678 is estimated to 2000 to the nearest 1000. [::678 500] So, estimated difference = 67000 - 6000 - 2000 = 61000 - 2000 = 59000 Actual difference = 66980 - 5832 - 1678 = 61148 - 1678 = 59470

Exercise 9.2

1.	(a)	134 is estimated to 100 to the nearest 100.	[:: 34	50]
		119 is estimated to 100 to the nearest 100.	[::19	50]
		So, the estimated product = $100 \times 100 = 10000$		
	(b)	284 is estimated to 300 to the nearest 100.	[:: 84	50]
		124 is estimated to 100 to the nearest 100.	[::24	50]
		So, the estimated product = $300 \times 100 = 30000$		
	(c)	792 is estimated to 800 to the nearest 100.	[:: 92	50]
		315 is estimated to 300 to the nearest 100.	[::15	50]
		So, the estimated product = $800 \times 300 = 240000$).	
	(d)	167 is estimated to 200 to the nearest 100.	[:: 67	50]
		105 is estimated to 100 to the nearest 100.	[::5	50]
		So, the estimated product = $200 \times 100 = 20000$		
	(e)	455 is estimated to 500 to the nearest 100.	[:: 55	50]
		233 is estimated to 200 to the nearest 100.	[:: 33	50]
		So, the estimated product = $500 \times 200 = 100000$		
	(f)	786 is estimated to 800 to the nearest 100.	[:: 86	50]
		103 is estimated to 100 to the nearest 100.	[:: 3	50]
		So, the estimated product = $800 \times 100 = 80000$		
2.	(a)	(i) 111 is estimated to 110 to the nearest 10.	[::1	5]
		215 is estimated to 220 to the nearest 10.	[::5	5]
		So, the estimated product = $110 \times 220 = 242$		
		(ii) 453 is estimated to 450 to the nearest 10.	[:: 3	5]
		134 is estimated to 130 to the nearest 10.	[::4	5]
		So, the estimated product = $450 \times 130 = 585$	500	
	(b)	(i) 456 is estimated to 500 to the nearest 100.	[:: 56	50]
		234 is estimated to 200 to the nearest 100.	[:: 34	50]
		So, the estimated product = $500 \times 200 = 100$	000	

(ii) 178 is estimated to 200 to the nearest 100. [∵ 78 50]
289 is estimated to 300 to the nearest 100. [∵ 89 50]
So, the estimated product = 200 × 300

= 60000

3. (a) 78 is estimated to 80. So, if the divisor is 6 then the estimated quotient = 13

Actual quotient = $78 \div 6 = 13$

Thus, the estimated and actual both quotients are same. Similarly,

(b) 128 is estimated to 130. So, if the divisor is 8 then the estimated quotient = 16

Actual quotient = $128 \div 8 = 16$

Thus, the estimated and actual both quotients are same.

(c) 147 is estimated to 150. So, if the divisor is 7 then the estimated quotient = 21
 Actual quotient = 147 ÷ 7 = 21

Thus, the estimated and actual both quotients are same.

(d) 171 is estimated to 170. So, if the divisor is 9 then the estimated quotient = 18 Actual quotient = 171 ÷ 9 = 19

Thus the estimated and actual both quotients are nearly equal.

(e) 184 is estimated to 180. So, if the divisor is 8 then the estimated quotient = 22 Actual quotient = $184 \div 8 = 23$

Thus the estimated and actual both quotients are nearly equal.

(f) 560 is estimated to 560. So, if the divisor is 5 then the estimated quotient = 112

Actual quotient = 112

Thus the estimated and actual both quotients are equal.

(g) 2568 is estimated to 2570. So, if the divisor is 12 then the estimated quotient = 214
 Actual quotient = 2568 ÷ 12 = 214

Thus the estimated and actual both quotients are equal.

(h) 1602 is estimated to 1600. So, if the divisor is 18 then the estimated quotient = 88 Actual quotient = 89

Thus the estimated and actual both quotients are nearly equal.

- 4. (a) $2, 2 \times 2 = 4, 4 \times 2 = 8, 8 \times 2 = 16, 16 \times 2 = 32, 32 \times 2 = 64, 64 \times 2 = 128, 128 \times 2 = 256, 256 \times 2 = 512.$
 - (b) $3, 3 \times 2 = 6, 6 \times 2 = 12, 12 \times 2 = 24, 24 \times 2 = 48, 48 \times 2 = 96, 96 \times 2 = 192, 192 \times 2 = 384, 384 \times 2 = 768.$
 - (c) 29, 29 + 5 = 34, 34 + 5 = 39, 39 + 5 = 44, 44 + 5 = 49, 49 + 5 = 54, 54 + 5 = 59, 59 + 5 = 64, 64 + 5 = 69
 - (d) 9, $9 \times 3 = 27$, $27 \times 3 = 81$, $81 \times 3 = 243$, $243 \times 3 = 729$, $729 \times 3 = 2187$, $2187 \times 3 = 6561$, $6561 \times 3 = 19683$, $19683 \times 3 = 59049$

CHECK YOURSELF

As per answersheet.

10. Multiples and Factors

Exercise 10.1

- (a) The first five multiples of 7 can be obtained by multiplying 7, by 1, 2, 3, 4 and 5. So, 7 × 1 = 7, 7 × 2 = 14, 7 × 3 = 21, 7 × 4 = 28, 7 × 5 = 35 Solve as Q.No. (a).
 - (b) The first five multiples of 14. 14 × 1 = 14, 14 × 2 = 28, 14 × 3 = 42, 14 × 4 = 56, 14 × 5 = 70
 (c) The first five multiples of 9.

 $9 \times 1 = 9$, $9 \times 2 = 18$, $9 \times 3 = 27$, $9 \times 4 = 36$, $9 \times 5 = 45$

- 2. (a) Multiples of 5 = 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70... Multiples of 7 = 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, So, two common multiples of 5 and 7 = 35, 70
 - (b) Multiples of 4 : 4, 8, 12, 16, 20, 24, 28, 32, Multiples of 8 : 8, 16, 24, 32, 40,
 So, two common multiples of 4 and 8 = 8, 16
 - (c) Multiples of 3 : 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42,.... Multiples of 6 : 6, 12, 18, 24, 30, 36, 42, 48, 54, 60,..... Multiples of 9 : 9, 18, 27, 36, 45, 54, 63, 72, 90,..... So, two common multiples of 3, 6 and 9 = 18, 36
- (a) Only 21 and 30 are not divisible by four among the given numbers. So, 21, 30 are not the multiples of 4.
 - (b) Only 20, 32 and 40 are not divisible by six among the given numbers. So, **20**, **32**, **40** are not the multiples of 6.
 - (c) Only 38, 44 and 64 are not divisible by nine among the given numbers. So, **38**, **44**, **64** are not the multiples of 9.

- (a) Yes, because 90 is divisible by 5 leaving no remainder behind. So, 90 is the multiple of 5.
 - (b) No, because 124 is not divisible by 3. So, 124 is not the multiple of 3.
 - (c) Yes, because 152 is divisible by 8 leaving no remainder behind. So, 152 is the multiple of 8.

Exercise 10.2

- 1. Refer to the properties of factors on textbook page 72.
- **2.** (a) Factors of 15 = 1, 3, 5, 15Factors of 20 = 1, 2, 4, 5, 10, 20 So, the common factor of 15 and 20 = 5(b) Factors of 15 = 1, 3, 5, 15Factors of 25 = 1, 5, 25So, the common factor of 15 and 25 = 5(c) Factors of 18 = 1, 2, 3, 6, 9, 18Factors of 30 = 1, 2, 3, 5, 6, 10, 15, 30 So, the common factor of 18 and 30 = 2, 3, 6(d) Factors of 14 = 1, 2, 7, 14Factors of 38 = 1, 2, 19, 38 So, the common factor of 14 and 38 = 2(e) Factors of 25 = 1, 5, 25Factors of 30 = 1, 2, 3, 5, 6, 10, 15, 30 So, the common factor of 25 and 30 = 5(f) Factors of 28 = 1, 2, 4, 7, 14, 28Factors of 24 = 1, 2, 3, 4, 6, 8, 12, 24 So, the common factor of 28 and 24 = 2, 4(g) Factors of 30 = 1, 2, 3, 5, 6, 10, 15, 30Factors of 32 = 1, 2, 4, 8, 16, 32 So, the common factor of 30 and 32 = 2(h) Factors of 56 = 1, 2, 4, 7, 8, 14, 28, 56Factors of 20 = 1, 2, 4, 5, 10, 20 So, the common factor of 56 and 20 = 2, 4.
- **3.** 8)1296(162

-8
49
-48
16
-16
×

Thus, 1296 is divisible by 8 leaving no remainder behind so, we can say that 8 is the factor of 1296.

- 4. 24 is divisible by 1, 2, 3, 4, 6, 8, 12 and 24. So, we can say that these are the factors of 24.
- **5.** From the properties of factors we know that 1 is the factor of every number.

So, the smallest factor of all the numbers = 1.

From the properties of factors we know that every non-zero number is the greatest factor of itself.

- So, the greatest factor of all the numbers = number itself.
- (a) Smallest factor = 1 Greatest factor = 13
- (b) Smallest factor = 1 Greatest factor = 16
- (c) Smallest factor = 1 Greatest factor = 25
- (e) Smallest factor = 1Greatest factor = 39
- (d) Smallest factor = 1 Greatest factor = 24
- 6. (a) 72 is divisible by 9 leaving no remainder behind. So, we can say that 9 is the factor of 72. So, the statement is **True**.
 - (b) 150 is divisible by 15 leaving no remainder behind. So, we can say that 15 is the factor of 150. So, the statement is **True**.
 - (c) 82 is not divisible by 8. So, we can say that 8 is not the factor of 82. So, the statement is False.
- 7. (a) 27 is divisible by 1, 3, 9, 27.
 So, the factors of 27 = 1, 3, 9, 27.
 - (b) 42 is divisible by 1, 2, 3, 6, 7, 14, 21, 42
 So, the factors of 42 = 1, 2, 3, 6, 7, 14, 21, 42.
 - (c) 54 is divisible by 1, 2, 3, 6, 9, 18, 27, 54
 So, the factors of 54 = 1, 2, 3, 6, 9, 18, 27, 54.
 - (d) 16 is divisible by 1, 2, 4, 8, 16So, the factors of 16 = 1, 2, 4, 8, 16.
 - (e) 81 is divisible by 1, 3, 9, 27, 81
 So, the factors of 81 = 1, 3, 9, 27, 81.
 - (f) 55 is divisible by 1, 5, 11, 55So, the factors of 55 = 1, 5, 11, 55.
 - (g) 63 is divisible by 1, 3, 7, 9, 21, 63So, the factors of 63 = 1, 3, 7, 9, 21, 63.
 - (h) 72 is divisible by 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72
 So, the factors of 72 = 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72.
- (a) 32 is not divisible by 3. So, we can say that 3 is not the factor of 32.

- (b) 440 is divisible by 5. So, we can say that 5 is the factor of 440.
- (c) 169 is divisible by 13. So, we can say that 13 is the factor of 169.
- (d) 278 is not divisible by 8. So, we can say that 8 is not the factor of 278.
- (e) 188 is not divisible by 8. So, we can say that 8 is not the factor of 188.
- (f) 240 is divisible by 16. So, we can say that 16 is the factor of 240.
- (g) 186 is not divisible by 19. So, we can say that 19 is not the factor of 186.
- (h) 396 is divisible by 12. So, we can say that 12 is the factor of 396.

Exercise 10.3

- 1. Refer to the test of divisibility on textbook page 74.
- 2. (a) We know that a number is divisible by 2 if the digit in the ones place is an even digit i.e., the digit in the ones place is 0, 2, 4, 6 or 8. Here 14, 30, 42, 56 and 68 have even numbers on ones digit place. So, these are divisible by 2.
 - (b) We know that a number is divisible by 3 if the sum of the digits of the number is a multiple of 3. Here the sum of digits in 39, 45, 57, 69 and 78 is multiple of 3. So, these numbers are divisible by 3.
 - (c) We know that, a number is divisible by 5 if the digits in the ones place is either 5 or 0. Here the numbers 35, 50, 70, 90 and 95 have either 5 or 0. So, these numbers are divisible by 5.
 - (d) We know that a number is divisible by 10 if the digit in the ones place is 0. Here **60**, **110** and **180** has 0 at ones digit place. So, these numbers are divisible by 10.
- (a) 34 is divisible by only 2 among the given numbers. So, 2 is the factor of 34.
 - (b) 50 is divisible by 2, 5 and 10 among the given numbers. So, 2, 5, 10 are the factors of 50.
 - (c) 95 is divisible only by 5 among the given numbers. So, 5 is the factor of 95.
 - (d) 60 is divisible by 2, 3, 5 and 10. So, 2, 3, 5 and 10 are the factors of 60.
 - (e) 78 is divisible by 2 and 3 among the given numbers. So, 2 and 3 are the factors of 78.
 - (f) 75 is divisible by 3 and 5 among the given numbers. So, **3** and **5** are the factors of 75.

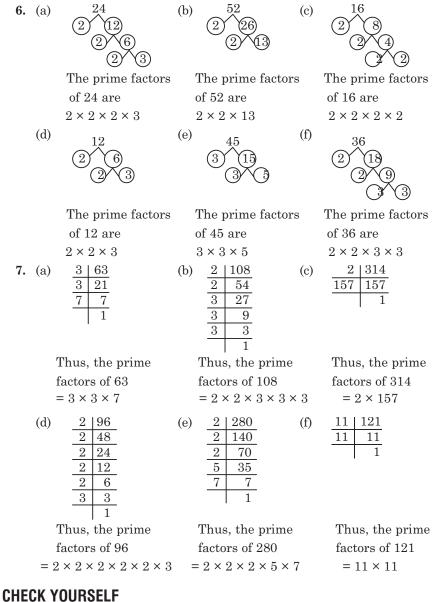
- 4. (a) The numbers between 35 and 55 which are divisible by 2 are 36, 38, 40, 42, 44, 46, 48, 50, 52, 54.
 - (b) The numbers between 35 and 55 which are divisible by 5 are 40, 45, 50.
 - (c) The numbers between 35 and 55 which are divisible by 10 are 40, 50.
 - (d) The numbers between 35 and 55 which are divisible by 2 as well as 5 are 40, 50.
 - (e) The numbers between 35 and 55 which are divisible by 5 as well as 10 are 40, 50.
 - (f) The numbers between 35 and 55 which are divisible by 2 as well as 3 are 36, 42, 48, 54.
- 5. Refer to the tests of divisibility on text book page 74.
- **6.** A number is divisible by 11 if the difference between the sum of its alternate digits is either zero or divisible by 11.

Exercise-10.4

- 1. The numbers 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 have only two factors 1 and the numbers itself so these are the prime numbers less than 50.
- The numbers 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68 and 69 have more than two factors so these are the composite numbers between 30 and 70.

1

3. As per answersheet.


4. (a) $\begin{array}{c} 1 \ 3 \\ + 1 \ 5 \\ \hline 2 \ 8 \end{array}$	(b) $\begin{array}{c} 2 \ 0 \\ + \ 6 \ 0 \\ \hline 8 \ 0 \end{array}$	(c) $33 \\ +47 \\ -80$
28 is an even	80 is an even	80 is an even
number.	number.	number.

- 5. (a) 67 does not have more than two factors. So, we can say that 67 is a prime number.
 - (b) 71 does not have more than two factors. So, we can say that 71 is a prime number.
 - (c) 97 does not have more than two factors. So, we can say that 97 is a prime number.
 - (d) 123 have more than two factors. So, we can say that 123 is a composite number.
 - (e) 113 does not have more than two factors. So, we can say that 113 is a prime number.

C.B.R.MODERN SR.SEC.SCHOOL BAHALA REWARI

Page 51 of 105

(f) 125 have more than two factors. So we can say that 125 is a composite number.

1. to 4. As per answersheet

11. HCF and LCM

Exercise 11.1

1.	(a)	For finding HCF by the inspection method we need to find the multiplication tables of those numbers in which all the given numbers occur.
		6 occurs in the multiplication tables of 2, 3 and 6 .
		42 occurs in the multiplication tables of 2, 3, 6 , 7, 14, 21 and 42.
		Here, 6 is the greatest number.
		6 is the HCF of 6 and 42.
		Solve as Q.No. (a).
	(b)	9 occurs in the multiplication tables of 3 and 9 .
		27 occurs in the multiplication tables of 3, 9 and 27.
		Here, 9 is the greatest number.
		9 is the HCF of 9 and 27.
	(c)	3 occurs in the multiplication table of 3 only.
		9 occurs in the multiplication tables of 3 and 9 .
		Here, 3 is the greatest number.
		3 is the HCF of 3 and 9.
	(d)	8 occurs in the multiplication tables of 2, 4 and 8.
		12 occurs in the multiplication tables of 2, 3, 4, 6 and 12.
		Here, 4 is the greatest number.
		4 is the HCF of 8 and 12.
	(e)	22 occurs in the multiplication tables of 2, 11 and 22.
		33 occurs in the multiplication tables of 3, 11 and 33.
		Here, 11 is the greatest number.
		11 is the HCF of 22 and 33.
	(f)	
		40 occurs in the multiplication tables of 2, 4, 5, 8, 10, 20 and 40.
		Here, 20 is the greatest number.
		20 is the HCF of 20 and 40.
	(g)	11 occurs in the multiplication table of 11 only.
		121 occurs in the multiplication tables of 11 and 121.
		Here, 11 is the greatest number.
		11 is the HCF of 11 and 121.
	(h)	10 occurs in the multiplication table of 2, 5 and 10.
		25 occurs in the multiplication tables of 5 and 25 .

Here, 5 is the greatest number.

5 is the HCF of 10 and 25.

2. (a) Factors of 18 = 1, 2, 3, 6, 9, 18Factors of 24 = 1, 2, 3, 4, 6, 8, 12, 24Common factors = 1, 2, 3, 66 is the HCF of 18 and 24. (b) Factors of 35 = 1, 5, 7, 35Factors of 45 = 1, 3, 5, 9, 15, 45Common factors = 1, 55 is the HCF of 35 and 45. (c) Factors of 54 = 1, 2, 3, 6, 9, 18, 27, 54Factors of 63 = 1, 3, 7, 9, 21, 63 Common factors = 1, 3, 99 is the HCF of 54 and 63. (d) Factors of 16 = 1, 2, 4, 8, 16Factors of 24 = 1, 2, 3, 4, 6, 8, 12, 24Factors of 40 = 1, 2, 4, 5, 8, 10, 20, 40 Common factors = 1, 2, 4, 8. 8 is the HCF of 16, 24 and 40. (e) Factors of 112 = 1, 2, 4, 7, 8, 14, 16, 28, 56, 112 Factors of 210 = 1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210Factors of 252 = 1, 2, 3, 4, 6, 7, 9, 12, 14, 18, 21, 28, 36, 42, 63, 84, 126, 252 Common factors = 1, 2, 7, 1414 is the HCF of 112, 210 and 252. (f) Factors of 84 = 1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 84 Factors of 90 = 1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90 Factors of 126 = 1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 63, 136 Common factors = 1, 2, 3, 66 is the HCF of 84, 90 and 126. (g) Factors of 21 = 1, 3, 7, 21Factors of 63 = 1, 3, 7, 9, 21, 63 Factors of 60 = 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 Common factors = 1, 33 is the HCF of 21, 63 and 60. (h) Factors of 42 = 1, 2, 3, 6, 7, 14, 21, 42Factors of 84 = 1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 84 Factors of 147 = 1, 3, 7, 21, 49, 147 Common factors = 1, 3, 7, 2121 is the HCF of 42, 84 and 147.

C.B.R.MODERN SR.SEC.SCHOOL BAHALA REWARI

Page 54 of 105

(a)	2	36	3	45
	2	18	3	15
	3	9	5	5
	3	3		1
		1		

3.

36 = 2 × 2 × 3 × 3 45 = 3 × 3 × 5 3 × 3 = 9 is the HCF of 36 and 45.

$$36 = 2 \times 2 \times 3 \times 3$$

$$63 = 3 \times 3 \times 7$$

$$3 \times 3 = 9 \text{ is the HCF}$$

of 36 and 63.

 $36 = 2 \times 2 \times 3 \times 3$ 90 = 2 × 3 × 3 × 5 108 = 2 × 2 × 3 × 3 × 3 2 × 3 × 3 = 18 is the HCF of 36, 90 and 108.

(b)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$48 = 2 \times 2 \times 2 \times 2 \times 3$
	$72 = 2 \times 2 \times 2 \times 3 \times 3$
	$2 \times 2 \times 2 \times 3 = 24$ is the HCF
(1)	of 48 and 72.
(d)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$72 = 2 \times 2 \times 2 \times 3 \times 3$
	$90 = 2 \times 3 \times 3 \times 5$
	$2 \times 3 \times 3 = 18$ is the HCF of
	72 and 90.
(f)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$45 = 3 \times 3 \times 5$
	$75 = 3 \times 5 \times 5$
	$105 = 3 \times 5 \times 7$
	$3 \times 5 = 15$ is the HCF of
	45, 75 and 105.

		/				
(h)	3	63	2	84	2	126
	3	21	2	42	3	63
	7	7	3	21	3	21
		1	$\overline{7}$	7	7	7
				1		1

 $63 = 3 \times 3 \times 7$ $84 = 2 \times 2 \times 3 \times 7$ $126 = 2 \times 3 \times 3 \times 7$ $3 \times 7 = 21$ is the HCF of 63, 84 and 126.

4. (a) For finding the HCF of the given numbers we divide the greater number by the smaller one.

$$112) 210 (1) \\ -112 \\ 98) 112 (1) \\ -98 \\ 14) 98 (7) \\ -98 \\ 0 \\ 14 \text{ is the last divisor.} \\ Now divide 252 by 14. \\ 14) 252 (18) \\ -252 \\ 0 \\ -252 \\ 0 \\ -252 \\ 0 \\ -252 \\ 0 \\ -252 \\ 0 \\ -252 \\ 0 \\ -252 \\ 0 \\ -252 \\ 0 \\ -252 \\ 0 \\ -252 \\ -252 \\ 0 \\ -252 \\ -252 \\ 0 \\ -252 \\ -252 \\ 0 \\ -252$$

84.
).

So, 2 is the HCF of 42, 56 and 68.

Exercise 11.2

- (a) For finding the LCM by the inspection method we need to find the multiplication tables of the given numbers. Multiplication table of 6 = 6, 12, 18, 24, 30, 36, 42, Multiplication table of 9 = 9, 18, 27, 36, 45, 54, 63, Here 18 is the lowest common number. 18 is the LCM of 6 and 9.
 - (b) Multiplication table of 12 = 12, 24, 36, 48, 60, 72, 84,
 Multiplication table of 14 = 14, 28, 42, 56, 70, 84, 98,
 Here 84 is the lowest common number.

84 is the LCM of 12 and 14.

(c) Multiplication table of 8 = 8, 16, 24, 32, 40, 48, 56, 64, 72, 80,

Multiplication table of 28 = 28, **56**, 84, 112, 140, 168, 196, 224, 252, 280

Here, 56 is the lowest common number.

56 is the LCM of 8 and 28.

(d) Multiplication table of 25 = 25, 50, 75, 100, 125, 150, 175, 200, 225, 250

Multiplication table of 40 = 40, 80, 120, 160, **200**, 240, 280, 320

Here, 200 is the lowest common number. 200 is the LCM of 25 and 40.

- 2. (a) Multiples of 8 = 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, Multiples of 10 = 10, 20, 30, 40, 50, 60, 70, 80, 90, Here, 40 is the lowest common number. 40 is the LCM of 8 and 10.
 - (b) Multiples of 9 = 9, 18, 27, 36, 45, 54, 63, 72, 81, 90, Multiples of 12 = 12, 24, 36, 48, 60, 72, Here 36 is the lowest common number. 36 is the LCM of 9 and 12.
 - (c) Multiples of 12 = 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, Multiples of 18 = 18, 36, 54, 72, 90, 108, 126, 144, 162, 180, Here 36 is the lowest common number. 36 is the LCM of 12 and 18.

(d) Multiples of 14 = 14, 28, 42, 56, 70, 84, 98, 112, 126, 140,
Multiples of 21 = 21, 42, 63, 84, 105, 126,
Here 42 is the lowest common number.

42 is the LCM of 14 and 21.

3.	(a)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(b)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(c)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	L	$CM = 2 \times 2 \times 3 \times 3$	LC	$CM = 2 \times 2 \times 3 \times 7$	LCN	$\mathbf{M} = 2 \times 2 \times 2 \times 2 \times 3$
		= 36		= 84		= 48
	(d)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(e)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(f)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		$LCM = 2 \times 2 \times 5 \times 5$	LCM	$\mathbf{I} = 2 \times 2 \times 2 \times 3 \times 5$	LCI	$M = 2 \times 2 \times 2 \times 3 \times 5 \times 5$
		= 100		= 120		= 600

(g)	2	15,	16,	24		(h)		2	12, 15, 20
	2	15,	8,	12				2	6, 15, 10
	2	15,	4,	6				3	3, 15, 5
	2	15,	2,	3				5	1, 5, 5
	3	15,	1,	3					1, 1, 1
	5	5,	1,	1					
		1,	1,	1					
	LC	M =	2×2	$\times 2$	$\times 2 \times 3 \times 5$		LCI	M =	= 2×2×3×5
		=	240)				=	= 60

Exercise 11.3

1.	First we subtract 9 from both 33 and 45. 33 - 9 = 24 $45 - 9 = 36Now we find the HCF of 24 and 36.$	$24) 36(1) \\ -24 \\ 12) 24(2)$
	So, 12 is the greatest number that will divide 33 and 45 leaving a remainder 9.	$\frac{-24}{0}$
2.	First we subtract 5 from 61, 33 and 75. $_{28}$) 56 (2 61 - 5 = 56 $_{33-5=28}$ 75 - 5 = 70 Now we find the HCF of 56, 28 and 70.	$ \begin{array}{r} 28 \overline{\smash{\big)}70}(2 \\ $

So, 14 is the largest number that will divide 61, 33 and 75 leaving a remainder 5.

 3. First we subtract 3 from 39, 4 from 52 36) 48 (1) 12) 60 (5)

 and 5 from 65.
 -36 -60

 39 - 3 = 36 12) 36 (3) 0

 52 - 4 = 48 -36 0

 65 - 5 = 60 0 0

```
Now we find the HCF of 36, 48 and 60.
```

So, 12 is the greatest number that will divide 39, 52 and 65 leaving remainders 3, 4 and 5 respectively.

4. First we find the LCM of 6, 15 and 18.

	6, 15, 18	
3	3, 15, 9	
3	1, 5, 3	
5	1, 5, 1	$= 2 \times 3 \times 3$
	1, 1, 1	= 2 ~ 3 ~ 6
		= 90

90 is the least number which is exactly divisible by each of 6, 15 and 18.

3

We know that,	
First number \times Second number = HCF \times LC	\mathbf{M}
$LCM = \frac{First number}{Second number}$	48
HCF	2
LCM = 24	
We know that,	
First number \times Second number = HCF \times LC	\mathbf{M}
$HCF = \frac{First number}{Second number}$	108
LCM	36
HCF = 3	
We know that,	
First number \times Second number = HCF \times LC	M
Second Number = $\frac{\text{HCF LCM}}{\text{First number}} = \frac{3 - 36}{12}$	3
	First number × Second number = HCF × LC $LCM = \frac{\text{First number Second number}}{HCF}$ $LCM = 24$ We know that, First number × Second number = HCF × LC $HCF = \frac{\text{First number Second number}}{LCM}$ $HCF = 3$ We know that, First number × Second number = HCF × LC

Second Number = 9

CHECK YOURSELF

1. to 4. As per Answersheet.

12. Fractional Numerals

Exercise 12.1

1. (a) One part is shaded out of two parts in the given figure.

So, the fraction of the shaded portion $\frac{1}{2}$.

- (b) One part is shaded out of three parts in the given figure. So, the fraction of the shaded portion $\frac{1}{3}$.
- (c) Three parts are shaded out of four parts in the given figure. So, the fraction of the shaded portion $\frac{3}{4}$.
- (d) Three parts are shaded out of eight parts in the given figure. So, the fraction of the shaded portion $\frac{3}{9}$.
- (a) All the fractions have same denominator. So, we can say that these are like fractions.
 - (b) All the fractions do not have same denominator. So, we can say that these are unlike fractions.

(c) All the fractions have different denominators. So, we say that these are like fractions. (d) All the fractions have same denominator. So, we can say that these are like fractions. 3. (a) We know that in proper fraction, denominator is greater than the numerator. So, in $\frac{5}{9}$ 9 5 So, this is a proper fraction. (b) In $\frac{9}{4}$ 4 9 So this is not a proper fraction. (c) $\ln \frac{6}{11}$ 11 6 So, this is a proper fraction. (d) $\ln \frac{11}{6}$ 6 11 So, this is not a proper fraction. (e) In $\frac{15}{17}$ $17 \ 15$ So, this is a proper fraction. 4. (a) We know that in improper fraction, numerator is greater than the denominator. So, in $\frac{17}{5}$ 175So, we can say that this is a improper fraction. (b) In $\frac{5}{21}$ 5 21 So, this is not a improper fraction. (c) $\ln \frac{3}{16}$ 3 16 So, this is not a improper fraction. (d) In $\frac{3}{19}$ 3 19 So, this is not a improper fraction. (e) $\ln \frac{16}{3}$ 16 3 So, this is a improper fraction.

Page 61 of 105

- (b) In $2\frac{3}{4}$ 5. (a) In $6\frac{1}{7}$ integral part = 6integral part = 2fractional part $\frac{3}{4}$ fractional part $\frac{1}{7}$ (c) In $4\frac{5}{7}$ (d) In $11\frac{3}{4}$ integral part = 4integral part = 11fractional part $\frac{5}{7}$ fractional part $\frac{3}{4}$ (e) In $21\frac{4}{9}$ integral part = 21; fractional part $\frac{4}{9}$
- 6. (a) We can change improper fractions into mixed fracitons by dividing numerator by denominator. We write quotient as integral part and the remainder at numerator and the denominator remains the same.

In
$$\frac{45}{11}$$
 denominator $\rightarrow 11$) $\frac{45}{45}$ (4 \leftarrow integral part
 $\frac{-44}{1}$ \rightarrow numerator
 $4\frac{1}{11}$
(b) $\frac{26}{9} = 2\frac{8}{9} = \frac{9) \cdot 26}{26} (2$
(c) $\frac{63}{15} = 4\frac{1}{25} = 4\frac{1}{5} = \frac{15}{60} \cdot 6\frac{60}{3}$
(d) $\frac{21}{5} = 4\frac{1}{5} = \frac{5}{21} \cdot 21 \cdot 4$
(e) $\frac{17}{6} = 2\frac{5}{6} = \frac{60}{-12} \cdot \frac{12}{5}$

7. (a) We can change the mixed fraction into improper fraction by multiplying denominator and integral part and thereafter adding the numerator. We put the sum on numerator place and denominator remains the same.

$$6\frac{7}{8} \quad \frac{(6 \quad 8) \quad 7}{8} \quad \frac{48 \quad 7}{8} \quad \frac{55}{8}$$
(b) $3\frac{7}{9} \quad \frac{(9 \quad 3) \quad 7}{9} \quad \frac{34}{9}$
(c) $8\frac{5}{6} \quad \frac{(8 \quad 6) \quad 5}{6} \quad \frac{53}{6}$
(d) $5\frac{9}{10} \quad \frac{(10 \quad 5) \quad 9}{10} \quad \frac{59}{10}$
(e) $4\frac{11}{13} \quad \frac{(4 \quad 13) \quad 11}{13} \quad \frac{63}{13}$

10

8. (a) We know that fraction which have 1 as their numerators are called unit fractions.

C.B.R.MODERN SR.SEC.SCHOOL BAHALA REWARI

Page 62 of 105

Here $\frac{1}{8}$ and $\frac{1}{22}$ have 1 as their numerators. So, (b) and (d) are the unit fractions. 9. (a) $\frac{3}{2}$ denominator $\rightarrow 2 \overline{\smash{\big)}3}$ (1 \leftarrow whole number $\frac{-2}{1} \rightarrow$ numerator $1\frac{1}{2}$ (b) $\frac{4}{3}$ $3 \overline{\smash{\big)}4}$ (1 (c) $\frac{4}{2}$ $2 \overline{\smash{\big)}4}$ (2 $\frac{-3}{1}$ $1\frac{1}{3}$ (c) $\frac{4}{2}$ $2 \overline{\smash{\big)}4}$ (2 (d) $\frac{17}{5}$ $5 \overline{\smash{\big)}17}$ (3 (e) $\frac{27}{3}$ $3 \overline{\smash{\big)}27}$ (9 $\frac{-27}{0}$ 9

10. (a) $3 \div 5$ means 3 divided by 5. So the fraction for the division $\frac{3}{5}$ (b) $7 \div 9$ 7 out of 9 $\frac{7}{9}$ (c) $15 \div 25$ 15 out of 25 $\frac{15}{25}$ (d) $13 \div 15$ 13 out of 15 $\frac{13}{15}$

Exercise 12.2

1	(-) 1	6	6	(1-)	1	$\overline{7}$	7	(-)	2	5	10	(1) 1	3	3
1.	(a) - 3	6	18	(b)	3	$\overline{7}$	21	(c)	$\overline{5}$	$\overline{5}$	25	(d) $\frac{1}{5}$	3	$\overline{15}$

 (a) We can find the higher order equivalent fraction by multiplying numerator and denominator by the same number.

	So,	$\frac{2}{3}$	$\frac{2}{2}$	$\frac{4}{6}$,	$\frac{2}{3}$	$\frac{3}{3}$	$\frac{6}{9}$,	$\frac{2}{3}$	$\frac{4}{4}$ 1	$\frac{8}{12}$,	$\frac{2}{3} \frac{4}{5}$	$\frac{5}{5} = \frac{10}{18}$	$\frac{1}{5}$
(b)	$\frac{5}{7}$	$\frac{2}{2}$	$\frac{10}{14}$,	$\frac{5}{7}$	$\frac{3}{3}$	$\frac{15}{21}$,	$\frac{5}{7}$	$\frac{4}{4}$	$\frac{20}{28}$	$, \frac{5}{7}$	$\frac{5}{5}$	$\frac{25}{35}$	
(c)	$\frac{3}{8}$	$\frac{2}{2}$	$\frac{6}{16}$,	$\frac{3}{8}$	$\frac{3}{3}$	$\frac{9}{24}$,	$\frac{3}{8}$	$\frac{4}{4}$	$\frac{12}{32}$	$, \frac{3}{8}$	$\frac{5}{5}$	$\frac{15}{40}$	
(d)	$\frac{7}{11}$	$\frac{2}{2}$	$\frac{14}{22}$	$\frac{7}{11}$	 1.	$\frac{3}{3} + \frac{2}{3}$	$\frac{1}{3}$,	$\frac{7}{11}$	$\frac{4}{4}$	$\frac{28}{44}$,	$\frac{7}{11}$	$\frac{5}{5}$	$\frac{35}{55}$
(e)	$\frac{3}{5}$	$\frac{2}{2}$	$\frac{6}{10}$,	$\frac{3}{5}$	$\frac{3}{3}$	$\frac{9}{15}$,	$\frac{3}{5}$	$\frac{4}{4}$	$\frac{12}{20}$	$\frac{3}{5}$	$\frac{5}{5}$	$\frac{15}{25}$	

- **3.** We can change the fraction into equivalent fractions having the numerator 16 by multiplying or dividing both numerator and denominator by suitable number.
- (a) $\frac{4}{7}$ $\frac{4}{4}$ $\frac{16}{28}$ (b) $\frac{32}{34}$ $\frac{2}{2}$ $\frac{16}{17}$ (c) $\frac{8}{9}$ $\frac{2}{2}$ $\frac{16}{18}$ (d) $\frac{32}{50}$ $\frac{2}{2}$ $\frac{16}{25}$ (e) $\frac{64}{80}$ $\frac{4}{4}$ $\frac{16}{20}$ 4. We can change the fraction into equivalent fractions having denominator 20 by dividing or multiplying denominator and numerator by suitable number. (a) $\frac{16}{40}$ $\frac{2}{2}$ $\frac{8}{20}$ (b) $\frac{1}{4}$ $\frac{5}{5}$ $\frac{5}{20}$ (c) $\frac{7}{10}$ $\frac{2}{2}$ $\frac{14}{20}$ (d) $\frac{4}{5}$ $\frac{4}{4}$ $\frac{16}{20}$ (e) $\frac{21}{60}$ $\frac{3}{3}$ $\frac{7}{20}$ 5. (a) $\frac{5}{12}$ and $\frac{3}{4}$ can be made like fractions by making denominator same. $\frac{3}{4}$ $\frac{3}{3}$ $\frac{9}{12}$. So, $\frac{5}{12}$ and $\frac{9}{12}$ are like fractions. (b) $\frac{3}{5}$ $\frac{7}{7}$ $\frac{21}{35}$, $\frac{5}{7}$ $\frac{5}{5}$ $\frac{25}{35}$. So, $\frac{21}{35}$ and $\frac{25}{35}$ are like fractions. (c) $\frac{7}{12}$ $\frac{5}{5}$ $\frac{35}{60}$, $\frac{8}{15}$ $\frac{4}{4}$ $\frac{32}{60}$ So, $\frac{35}{60}$ and $\frac{32}{60}$ are like fractions. (d) $\frac{13}{25}$ $\frac{3}{3}$ $\frac{39}{75}$, $\frac{13}{15}$ $\frac{5}{5}$ $\frac{65}{75}$. So, $\frac{39}{75}$ and $\frac{65}{75}$ are like fractions.
 - (e) $\frac{5}{8}$ $\frac{3}{3}$ $\frac{15}{24}$, $\frac{7}{12}$ $\frac{2}{2}$ $\frac{14}{24}$, $\frac{13}{24}$. So, $\frac{15}{24}$, $\frac{14}{24}$ and $\frac{13}{24}$ are like fractions.

Exercise 12.3

1. (a) For comparison of fraction we cross multiply and compare

$$\frac{3}{4} \times \frac{1}{6}$$

$$3 \times 6 \quad 4 \times 1$$

$$18 > 4$$

$$\frac{3}{4} \ge \frac{1}{6}$$

So,

(b) Here denominators are same. Now the fraction with the greater numerator will be greater.

:: 5 < 18

So,

$$\frac{5}{19} \le \frac{18}{19}$$

 $\frac{12}{14} \ge \frac{12}{16}$

(c) Here numerators are same. Now the fraction with the smaller denominator will be greater.

So,

So,
$$\frac{19}{25} \le \frac{29}{25}$$

2. (a) $3\frac{2}{3} \square \frac{11}{3}$ (b) $\frac{7}{4} \square 2\frac{3}{5}$
 $\frac{3}{3} \frac{3}{2} \square \frac{11}{3}$ $\frac{7}{4} \square \frac{5}{2} \frac{2}{3}$
 $\frac{1}{3} \equiv \frac{11}{3}$ $\frac{7}{4} \square \frac{13}{5}$
So, $3\frac{2}{3} \equiv \frac{11}{3}$ 7×5 13×4 (cross-multiply)
 $35 \le 52$
So, $\frac{7}{4} < 2\frac{3}{5}$
(c) $2\frac{1}{10} \square \frac{3}{50}$ (d) $4\frac{10}{11} \square 4\frac{5}{22}$
 $\frac{2}{10} \square \frac{3}{50}$ $\frac{4}{11} \square \Omega \square 4\frac{5}{22}$
 $21 50 3 10$ (cross-multiply)
 $1050 \ge 30$ $1188 \ge 1023$
So, $2\frac{1}{10} \ge \frac{3}{50}$ So, $4\frac{10}{11} \ge 4\frac{5}{22}$
3. (a) $3\frac{4}{5}$, $5\frac{2}{11}$
 $\frac{19}{5}$ $\frac{57}{11}$
 19×11 5×57
 $209 < 285$
So, $3\frac{4}{5} \le 5\frac{2}{11}$

(b) $\frac{8}{5}$, $1\frac{2}{6}$ $\frac{8}{5}$ $\frac{6}{6}$ $\frac{1}{6}$ $\frac{2}{6}$ $\frac{8}{6}$ Here numerators are same so the fraction with smaller denominator will be greater. ÷ 5 < 6 $\frac{\frac{8}{5}}{\frac{8}{5}} > \frac{\frac{8}{6}}{\frac{8}{5}} > 1\frac{2}{6}$ So, (c) $3\frac{1}{7}$ $3\frac{2}{5}$ (d) $2\frac{6}{9} \ 2\frac{5}{9}$ $\frac{2}{9} \ 6}{9}$, $\frac{2}{9} \ 9}{9}$ $\frac{3 \ 7 \ 1}{7} \quad \frac{3 \ 5 \ 2}{5}$ $\frac{22}{7} \qquad \frac{17}{5}$ 2423 22×5 17×7 Here denominators are same. 110 < 119 So, the fraction with greater So, $3\frac{1}{7} < 3\frac{2}{5}$ numerator will be greater. 24 > 23So, $2\frac{6}{9} \ge 2\frac{5}{9}$ (e) $\frac{11}{27}$, $1\frac{4}{9}$ $\frac{11}{27}, \qquad \frac{9 \ 1 \ 4}{9}$ $\frac{11}{27}, \frac{13}{9}$ 11×9 27×13 99 351So, $\frac{11}{27} \le 1\frac{4}{9}$

4. (a) Here denominators are same so the fraction with greatest number will be the greatest.

$$3 < 6 < 7 < 8$$

So, $\frac{8}{12}$ is the greatest fraction among the given fractions.

(b) Here numerators are same so the fraction with smallest denominator will be the greatest.

$$41 > 31 > 20 > 17 > 15$$

So, $\frac{13}{15}$ is the greatest fraction among the given fractions.

(c) Here numerators are same so the fraction with smallest denominator will be the greatest.

19 > 16 > 17 > 14 > 11

So, $\frac{8}{11}$ is the greatest fraction among the given fractions.

5. (a) Here numerators are same so the fraction with smallest denominator will be the greatest.

So, $\frac{8}{11}$ is the greatest fraction among the given fractions.

(b) Here numerators are same so the fraction with smallest denominator will be the greatest.

59 > 56 > 47 > 46

So, $\frac{42}{46}$ is the greatest fraction among the given fractions.

(c) Here denominators are same so the fraction with greatest numerator will be the greatest.

1 < 7 < 8 < 9

So, $\frac{9}{19}$ is the greatest fraction among the given fraction.

Exercise 12.4

1. We can reduced the fractions to its lowest terms, by dividing numerators and denominators by their HCF.

(a)
$$\frac{16}{12}$$
 H.C.F. of 16 and 12 = 4
 $\frac{16}{12}$ $\frac{16}{12}$ $\frac{4}{12}$ $\frac{4}{3}$
So, $\frac{4}{3}$ is the lowest term of the fraction $\frac{16}{12}$.
(b) Similarly
 $\frac{54}{12}$ H.C.F. of 54 and 12 = 6
 $\frac{54}{12}$ $\frac{54}{12}$ $\frac{6}{12}$ $\frac{9}{2}$. So, $\frac{9}{2}$ is the lowest term of the fraction $\frac{54}{12}$.

(c)
$$\frac{24}{20}$$
 H.C.F. of 24 and 20 = 4
 $\frac{24}{20}$ $\frac{24}{20}$ $\frac{4}{4}$ $\frac{6}{5}$ So, $\frac{6}{5}$ is the lowest term of the fraction $\frac{24}{20}$.
(d) $\frac{56}{40}$ H.C.F. of 56 and 40 = 8
 $\frac{56}{40}$ $\frac{56}{40}$ $\frac{8}{8}$ $\frac{7}{5}$ So, $\frac{7}{5}$ is the lowest term of the fraction $\frac{56}{40}$.
(e) $\frac{64}{72}$ H.C.F. of 64 and 72 = 8.
 $\frac{64}{72}$ $\frac{64}{72}$ $\frac{8}{8}$ $\frac{8}{9}$. So, $\frac{8}{9}$ is the lowest term of the fraction $\frac{64}{72}$.
2. (a) $4\frac{2}{3}$ $\frac{4}{3}$ $\frac{3}{2}$ (b) $5\frac{1}{3}$ $\frac{5}{3}$ $\frac{3}{1}$
Now reciprocal of $\frac{14}{3}$ $\frac{3}{14}$ Now reciprocal of $\frac{16}{3}$ $\frac{3}{16}$
(c) $2\frac{3}{5}$ $\frac{2}{5}$ $\frac{5}{5}$ (d) $3\frac{3}{8}$ $\frac{3}{8}$ $\frac{8}{8}$
 $\frac{13}{5}$ $\frac{27}{8}$
Now reciprocal of $\frac{13}{5}$ $\frac{5}{13}$ Now reciprocal of $\frac{27}{8}$ $\frac{8}{27}$
(e) $1\frac{7}{8}$ $\frac{1}{8}$ Now reciprocal of $\frac{13}{5}$ $\frac{5}{13}$ Now reciprocal of $\frac{27}{8}$ $\frac{8}{27}$
(e) $1\frac{7}{8}$ $\frac{1}{8}$ Now reciprocal of $\frac{13}{5}$ $\frac{5}{13}$ Now reciprocal of $\frac{27}{8}$ $\frac{8}{27}$
(f) $\frac{1}{3}$ $\frac{1}{3}$ Now reciprocal of $\frac{15}{8}$ $\frac{8}{15}$
3. (a) Reciprocal of the fraction $\frac{3}{11}$ $\frac{11}{3}$
 $\frac{11}{3}$ can be expressed as mixed fraction as
denominator \rightarrow $3)$ 111 $(3 \leftarrow integral part)$
 $\frac{-9}{2} \rightarrow numerator$
So, $\frac{11}{3}$ $3\frac{2}{3}$
(b) Reciprocal of the fraction $\frac{7}{10}$ $\frac{10}{7}$ $7)$ $\frac{7}{10}$ (1)
 $\frac{-7}{3}$

Page 68 of 105

(c) Reciprocal of the fraction $\frac{6}{11}$ $\frac{11}{6}$		6)11(1) -6
$\frac{11}{6}$ can be expressed as mixed fraction	$1\frac{5}{11}$	5
(d) Reciprocal of the fraction $\frac{8}{17}$ $\frac{17}{8}$		8 17 2
$\frac{17}{8}$ can be expressed as mixed fraction	$2\frac{1}{8}$	$\frac{-10}{1}$
(e) Reciprocal of the fraction $\frac{4}{21} = \frac{21}{4}$		4)21(5)
$\frac{21}{4}$ can be expressed as mixed fraction	$5\frac{1}{4}$	$\frac{-20}{1}$

CHECK YOURSELF

1. to 3. As per answersheet.

13. Fundamental Operations of Fractional Numbers

Exercise 13.1

1. (a) If the denominator are same, we add the numerator directly keeping the deonominator same.

2. If the denominators are not same then we find the LCM of the denominators and making the LCM as denominator of the sum. Then we divide it by the denominator and multiply the numerators by the quotient and then add.

(a) $\frac{2}{3}$	$\frac{5}{6}$	LCM of 3 and $6 = 6$							
		2	2	5	1	$\frac{4}{6}$	5	$\frac{9}{6}$	$\frac{3}{2}$
(b) $\frac{2}{5}$	$\frac{4}{15}$			LC	Мo	f 5 :	and	15 =	: 15
		2		4			4.5	$\frac{10}{15}$	$\frac{2}{3}$

C.B.R.MODERN SR.SEC.SCHOOL BAHALA REWARI

Page 69 of 105

	(c)	$\frac{5}{1}$	$\frac{4}{9}$	LCM of 1 and $9 = 9$
		-	U	$\frac{5 \ 9 \ 4 \ 1}{9} \frac{45 \ 4}{9} \frac{49}{9}$
		3	21	0 0 0
	(d)	$\frac{1}{1}$	$\frac{21}{18}$	LCM of 1 and 18 = 18
				$\frac{3 \ 18 \ 21 \ 1}{18} \ \frac{54 \ 21}{18} \ \frac{75}{18}$
	(α)	5	7	$\frac{11}{18}$ LCM of 6, 12 and 18 = 36
	(e)	6	12	
				$\frac{5 \ 6 \ 7 \ 3 \ 11 \ 2}{36} \frac{30 \ 21 \ 22}{36} \frac{73}{36}$
	(f)	$\frac{1}{2}$	$\frac{5}{6}$	$\frac{3}{4}$ LCM of 2, 6 and 4 = 12
		2	6	±
		0	~	12 12 12
	(g)	$\frac{2}{3}$	$\frac{5}{9}$	$\frac{7}{21}$ LCM of 3, 9 and 21 = 63
				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		9	1	
	(h) $\frac{2}{3}$	$\frac{2}{3}$	$\frac{1}{9}$	
				$\frac{2 \ 6 \ 4 \ 2 \ 5 \ 1}{18} \frac{12 \ 8 \ 5}{18} \frac{25}{18}$
9	(-)	4	6	10 10 10
J.	(a)	1	13	LCM of 1 and 13 = 13
				$\frac{4 \ 13 \ 6 \ 1}{13} \ \frac{52 \ 6}{13} \ \frac{58}{13}$
	(b)	7	<u>11</u>	LCM of 1 and $4 = 4$
		1	4	
				$\frac{7 \ 4 \ 11 \ 1}{4} \ \frac{28 \ 11}{4} \ \frac{39}{4}$
	(c)	$\frac{2}{1}$	$\frac{3}{11}$	LCM of 1 and 11 = 11
		T	11	$\frac{2 \ 11 \ 3 \ 1}{11} \ \frac{22 \ 3}{11} \ \frac{25}{11}$
		7	1	11 11 11
	(d)	$\frac{1}{1}$	$\frac{1}{11}$	LCM of 1 and $11 = 11$
				$\frac{7 \ 11 \ 1 \ 1}{11} \ \frac{77 \ 1}{11} \ \frac{78}{11}$
				11 11 11

180

(e)
$$\frac{5}{1}$$
 $\frac{8}{13}$ LCM of 1 and 13 = 13
 $\frac{5 \ 13 \ 8 \ 1}{13}$ $\frac{65 \ 8}{13}$ $\frac{73}{13}$
(f) $\frac{8}{1}$ $\frac{9}{5}$ LCM of 1 and 5 = 5
 $\frac{8 \ 5 \ 9 \ 1}{5}$ $\frac{40 \ 9}{5}$ $\frac{49}{5}$

4. For adding mixed fraction we convert mixed fraction into improper fraction then add.

(a) In
$$5\frac{1}{4}$$
 $2\frac{3}{4}$
 $\frac{5}{4}$ $\frac{4}{1}$ $\frac{2}{4}$ $\frac{3}{4}$ $\frac{21}{4}$ $\frac{11}{4}$
 $\frac{21}{4}$ $\frac{11}{4}$ $\frac{32}{4}$ 8
(b) $2\frac{1}{2}$ $3\frac{1}{2}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{1}{2}$ $\frac{3}{2}$ $\frac{2}{2}$
 $\frac{5}{2}$ $\frac{7}{2}$ $\frac{5}{2}$ $\frac{7}{2}$ $\frac{12}{2}$ 6
(c) $2\frac{1}{3}$ $5\frac{5}{18}$ $\frac{2}{3}$ $\frac{3}{1}$ $\frac{5}{18}$ $\frac{18}{5}$
 $\frac{7}{3}$ $\frac{95}{18}$ $\frac{7}{6}$ $\frac{6}{95}$ $\frac{1}{18}$ [\because LCM of 3 and 18 = 18]
 $\frac{42}{18}$ $\frac{95}{18}$ $\frac{137}{18}$ $7\frac{11}{18}$
(d) $1\frac{3}{4}$ $2\frac{1}{2}$ $3\frac{5}{12}$ $\frac{4}{1}$ $\frac{1}{3}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{1}{2}$ $\frac{3}{12}$ $\frac{12}{5}$
 $\frac{7}{4}$ $\frac{5}{2}$ $\frac{41}{12}$ $\frac{3}{7}$ $\frac{7}{6}$ $\frac{5}{1}$ $\frac{1}{41}$ [\because LCM of 4, 2 and 12 = 12]
 $\frac{21}{30}$ $\frac{41}{12}$ $\frac{92}{12}$ $7\frac{8}{12}$
(e) $1\frac{1}{8}$ $3\frac{5}{12}$ $2\frac{13}{16}$ $\frac{1}{8}$ $\frac{8}{1}$ $\frac{3}{12}$ $\frac{2}{16}$ $\frac{13}{16}$
 $\frac{9}{8}$ $\frac{41}{12}$ $\frac{45}{16}$ $\frac{6}{9}$ $\frac{4}{41}$ $\frac{3}{45}$
[\because LCM of 8, 12 and 16 = 48]
 $\frac{54}{48}$ $\frac{135}{48}$ $\frac{353}{48}$ $7\frac{17}{48}$

C.B.R.MODERN SR.SEC.SCHOOL BAHALA REWARI Page 71 of 105

(f)
$$9\frac{5}{14} 2\frac{3}{7} 3\frac{5}{28} \frac{14}{28} \frac{9}{14} \frac{5}{7} \frac{2}{7} \frac{7}{3}}{7} \frac{3}{28} \frac{28}{28} \frac{5}{28}$$

 $\frac{131}{4} \frac{17}{7} \frac{89}{28} \frac{7}{2131} \frac{4}{17} \frac{17}{1} \frac{89}{28}$
 $[\because \text{ LCM of } 4, 7 \text{ and } 28 = 28]$
 $= \frac{917}{28} \frac{68}{28} \frac{89}{28} \frac{1076}{28}$
 $38\frac{12}{28} \frac{38}{7} \frac{3}{7}$
5. (a) $2\frac{6}{6} 3\frac{7}{12} \frac{6}{2} \frac{2}{5} \frac{5}{6} \frac{3}{12} \frac{12}{7}$
 $\frac{17}{12} \frac{43}{6} \frac{34}{12} \frac{443}{12}$ [$\because \text{ LCM of } 6 \text{ and } 12 = 12$]
 $\frac{77}{12} \frac{6}{12} \frac{5}{12}$
(b) $3\frac{4}{15} \frac{6}{120} \frac{3}{15} \frac{4}{15} \frac{6}{60} \frac{20}{11}$
 $\frac{49}{15} \frac{131}{20} \frac{49}{4} \frac{4}{131} \frac{3}{60}$ [$\because \text{ LCM of } 15 \text{ and } 20 = 60$]
 $\frac{196}{393} \frac{589}{60} \frac{9\frac{49}{60}}{60}$
(c) $3\frac{3}{7} 10\frac{1}{7} \frac{24}{7} \frac{71}{7}$
 $\frac{24}{7} \frac{71}{7} \frac{95}{7} 13\frac{4}{7}$
(d) $3\frac{3}{4} 3\frac{7}{9} 3\frac{5}{12} \frac{15}{4} \frac{34}{36} \frac{41}{12}$
 $\frac{15}{36} \frac{434}{12} \frac{394}{36} \frac{134}{36}$ [$\because \text{ LCM of } 4, 9 \text{ and } 12 = 36$]
 $\frac{135}{136} \frac{123}{12} \frac{394}{36} \frac{134}{36}$
(e) $2\frac{3}{16} 3\frac{5}{12} 5\frac{3}{4} \frac{35}{46} \frac{41}{12} \frac{23}{4}$
 $\frac{3}{35} \frac{4}{41} \frac{23}{212} \frac{12}{48}$ [$\because \text{ LCM of } 16, 12 \text{ and } 4 = 48$]
 $\frac{105}{48} \frac{126}{48} \frac{545}{48} \frac{11}{4\frac{17}{48}}$
(f) $3\frac{4}{7} 1\frac{10}{21} \frac{7}{1} \frac{25}{7} \frac{31}{21} \frac{7}{1}$

$$\frac{25 \quad 3 \quad 31 \quad 1 \quad 7 \quad 21}{21} \qquad [\because \text{ LCM of } 7 \text{ and } 21 = 21]$$

$$\frac{75 \quad 31 \quad 147}{21} \quad \frac{253}{21} \quad 12\frac{1}{21}$$

Exercise 13.2

1. As per answersheet.

Exercise 13.3

1. (a) Here denominators are same, so we subtract the smaller numerator from the greater one directly.

	5	3	$5 \ 3$	2					
	17	17	17	$\overline{17}$					
(h)	9	6	$\frac{9 6}{14}$	3	(c)	13	7	$\frac{13}{15} \frac{7}{7}$	
(0)	14	$\overline{14}$	14	$\overline{14}$	(C)	$\overline{15}$	$\overline{15}$	15	$\overline{15}$

(d) Here denominator are not same, so we find the LCM of the given denominators. After that we divide the LCM by denominators and multiply quotient by numerator and subtract.

$\frac{3}{4}$ $\frac{3}{6}$ $\frac{6}{24}$ $\frac{3}{24}$	[\because LCM of 4 and 6 = 24]							
(e) $\frac{8}{1}$ $\frac{1}{2}$ $\frac{2}{8}$ $\frac{5}{5}$ $\frac{1}{1}$	[: LCM of 25 and 10 = 50]							
25 10 50	$\begin{bmatrix} \cdot & 1 & 0 & 1 & 0 \\ \cdot & 1 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$							
$16 \ 5 \ 11$								
<u> </u>								
(f) $\frac{-15}{5}$ $\frac{-15}{15}$ $\frac{-15}{15}$	[:: LCM of 5 and $15 = 15$]							
$\frac{12}{15}$ $\frac{1}{15}$								
(g) $\frac{9}{-1}$ $\frac{5}{-1}$ $\frac{9}{-1}$ $\frac{3}{-1}$ $\frac{4}{-1}$	[:: LCM of 16 and 12 = 48]							
27 20 7								
48 48								
(b) 15 5 15 3 5 1	[:: LCM of 8 and 24 = 24]							
(ii) $\frac{-1}{8}$ $\frac{-1}{24}$ $\frac{-1}{24}$	[: 1000 of 8 and 24 - 24]							
$\overline{24}$ $\overline{24}$								
As per answersheet.								
	(h) $\frac{15}{8} \frac{5}{24} \frac{15}{24} \frac{3}{24} \frac{5}{24} \frac{15}{24} \frac{15}{24} \frac{45}{24} \frac{45}{24} \frac{15}{24} 15$							

3. For subtracting the mixed fraction we convert mixed fraction into improper fraction then we perform the subtraction.

improper machon men we perior	n the Subtraction.
(a) $3\frac{3}{8}$ $1\frac{2}{3}$ $\frac{3}{8}$ $\frac{8}{8}$ $\frac{3}{3}$ $\frac{3}{3}$	
27 5 3 27 8 5	$\begin{bmatrix} \mathbf{I} \mathbf{C} \mathbf{M} & \mathbf{C} \mathbf{O} & \mathbf{I} \mathbf{O} & -\mathbf{O} \mathbf{A} \end{bmatrix}$
$\frac{27}{8} \frac{5}{3} \frac{3}{24} \frac{27}{24} \frac{8}{5}$	[:: LCM of 8 and 3 = 24]
$\frac{81 40}{24} \frac{41}{24} 1\frac{17}{24}$ (b) $3\frac{4}{6} 2\frac{11}{12} \frac{22}{6} \frac{35}{12}$	
24 24 24	
(b) $3\frac{4}{6}$ $2\frac{11}{12}$ $\frac{22}{6}$ $\frac{35}{12}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\frac{2 22 1 35}{12} \frac{44 35}{12}$	[∵ LCM of 6 and 12 = 12]
$\frac{9}{12}$ $\frac{3}{4}$	
(c) $\frac{5}{1}$ $1\frac{4}{9}$ $\frac{5}{1}$ $\frac{13}{9}$	
	$\begin{bmatrix} \mathbf{I} \mathbf{O} \mathbf{M} & \mathbf{C} 1 & 1 \mathbf{O} - \mathbf{O} \end{bmatrix}$
$\frac{9 \ 5 \ 1 \ 13}{9} \ \frac{45 \ 13}{9}$	[: LCM of 1 and $9 = 9$]
$\frac{45 \ 13}{9} \ \frac{32}{9} \ \mathbf{3\frac{5}{9}}$	
(d) $6\frac{1}{8}$ $4\frac{3}{4}$ $\frac{49}{8}$ $\frac{19}{4}$	
$\frac{49 1 19 2}{8}$	
$\frac{49 \ 38}{8} \ \frac{11}{8} \ 1\frac{3}{8}$ (e) $4\frac{7}{8} \ 1\frac{11}{24} \ \frac{39}{8} \ \frac{35}{24}$	[∵ LCM of 8 and 4 = 8]
8 8 8 7 11 39 35	
(e) $4\frac{1}{8}$ $1\frac{11}{24}$ $\frac{35}{8}$ $\frac{55}{24}$	
$39 \ 3 \ 35 \ 1$	[∵ LCM of 8 and 24 = 24]
24	$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$
$ \frac{39 \ 3 \ 35 \ 1}{24} \\ \frac{117 \ 35}{24} \ \frac{82}{24} \ \mathbf{3\frac{10}{24}} $	
24 24 24 24	
(f) $3\frac{7}{12}$ $1\frac{1}{2}$ $\frac{43}{12}$ $\frac{3}{2}$	
$\frac{43 \ 1 \ 3 \ 6}{12} \frac{43 \ 18}{12}$	[∵ LCM of 12 and 2 = 12]
12 12	· ····································
$\frac{25}{12}$ $2\frac{1}{12}$	
	[] OM . C = 100 = 101
(g) $6\frac{2}{5}$ $3\frac{9}{10}$ $\frac{32}{5}$ $\frac{39}{10}$	[:: LCM of 5 and 10 = 10]
184	

	$2 \ 32 \ 39 \ 1 \ 64 \ 39$	
	10 10	
	$\frac{25}{10} \frac{5}{2}$	
	(h) $8\frac{1}{4}$ $5\frac{2}{3}$ $\frac{33}{4}$ $\frac{17}{3}$	
	$\frac{33}{3} 3 4 17 99 68$	[∵ LCM of 4 and 3 = 12]
	12 12	
	$\frac{31}{12}$ $2\frac{7}{12}$	
4.	(a) $2 1\frac{2}{7} \frac{2}{1} \frac{9}{7}$	
	1 1 1	
	$\frac{14}{7}$ $\frac{9}{7}$ $\frac{5}{7}$	[∵ LCM of 1 and 7 = 7]
	1 1	
	(b) 8 $4\frac{3}{4}$ $\frac{8}{1}$ $\frac{19}{4}$	
	32 19 13 1	
	$\frac{32}{4}$ $\frac{19}{4}$ $\frac{13}{4}$ $3\frac{1}{4}$	[:: LCM of 1 and $4 = 4$]
	(c) $4\frac{2}{7}$ $3\frac{1}{8}$ $\frac{30}{7}$ $\frac{25}{8}$	
	$\frac{240 \ 175}{56} \ \frac{65}{56} \ 1\frac{9}{56}$	[∵ LCM of 8 and 7 = 56]
	(d) $5\frac{2}{8}$ $2\frac{1}{3}$ $\frac{42}{8}$ $\frac{7}{3}$	
	$\frac{126}{24} \frac{56}{24} \frac{70}{24} \frac{22}{24}$	[∵ LCM of 8 and 3 = 24]
	24 24 24	

Exercise 13.4

1. (a) $\frac{11}{12}$ $\frac{5}{12}$ $\frac{1}{12}$

Here, denominators are same so we calculate the answer directly.

$$\frac{11 \quad 5 \quad 1}{12} \quad \frac{7}{12}$$
(b) $\frac{4}{7} \quad \frac{1}{14} \quad \frac{1}{28}$

$$\frac{4 \quad 4 \quad 1 \quad 1 \quad 2 \quad 1 \quad 1}{28}$$

$$\frac{4 \quad 4 \quad 1 \quad 1 \quad 2 \quad 1 \quad 1}{28}$$

$$\frac{16 \quad 2 \quad 1}{28} \quad \frac{15}{28}$$

(c) $7\frac{3}{4}$ $5\frac{7}{12}$ $8\frac{3}{16}$ $\frac{31}{4}$ $\frac{67}{12}$ $\frac{131}{16}$ $\frac{12}{4}$ $\frac{31}{4}$ $\frac{67}{67}$ $\frac{131}{16}$ $\frac{372}{48}$ $\frac{247}{48}$ $5\frac{7}{48}$ (d) $\frac{6}{1}$ $2\frac{2}{7}$ $1\frac{2}{5}$	[∵ LCM of 4, 12 and 16 = 48]
$ \frac{\frac{6}{1}}{\frac{16}{7}} \frac{\frac{7}{5}}{\frac{5}{5}} \\ \frac{\frac{35}{5}}{\frac{210}{35}} \frac{6}{\frac{49}{35}} \frac{\frac{81}{35}}{\frac{81}{35}} 2\frac{11}{35} $	[∵ LCM of 1, 7 and 5 = 35]
(e) $6\frac{3}{4} 2\frac{1}{2} 1\frac{3}{8}$ $\frac{27}{4} \frac{5}{2} \frac{11}{8}$ $\frac{54}{20} \frac{20}{11}$ $\frac{23}{8} 2\frac{7}{8}$ (f) $8\frac{5}{24} 9\frac{5}{8} 10\frac{5}{6}$	[∵ LCM of 4, 2 and 8 = 8]
$ \frac{197}{24} \frac{77}{8} \frac{65}{6} \\ \frac{197}{24} \frac{231}{24} \frac{260}{24} \\ \frac{168}{24} 7 $	[∵ LCM of 24, 8 and 6 = 24]
(g) $5\frac{8}{21} 2\frac{3}{7} 7\frac{11}{14}$ $\frac{113}{21} \frac{17}{7} \frac{109}{14}$ $\frac{226 \ 102 \ 327}{42}$ $\frac{553 \ 102}{42} \frac{451}{42} 10\frac{31}{42}$	[∵ LCM of 21, 7 and 14 = 42]
186	

16]

	(h) $8\frac{1}{3}$ $4\frac{1}{9}$ $6\frac{1}{6}$ $\frac{25}{3}$ $\frac{37}{9}$ $\frac{37}{6}$ $\frac{150}{18}$ $\frac{74}{111}$ $\frac{113}{18}$ $6\frac{5}{18}$	[∵ LCM of 3, 9 and 6 = 18]
	(i) $5\frac{1}{8}$ $2\frac{3}{4}$ $3\frac{1}{2}$ $4\frac{5}{16}$ $\frac{41}{8}$ $\frac{11}{4}$ $\frac{7}{2}$ $\frac{69}{16}$ $\frac{82}{16}$ $\frac{44}{16}$ $\frac{56}{16}$ $\frac{1}{16}$	[:: LCM of 8, 4, 2 and 16 = $3 - 4$
2.	(a) $\frac{2}{1} \frac{3}{11}$ $\frac{22}{11} \frac{3}{11}$ $\frac{25}{11} 2\frac{3}{11}$	(b) $\frac{3}{1} \frac{4}{13}$ $\frac{39}{13} \frac{4}{13}$ $\frac{43}{13} \frac{3}{13} \frac{4}{13}$
	(c) $\frac{7}{1} \frac{12}{4}$ $\frac{28 12}{4}$ $\frac{40}{4} 10$	(d) $\frac{6}{1} \frac{4}{3}$ $\frac{18}{3} \frac{4}{3}$ $\frac{22}{3} 7\frac{1}{3}$
	(e) $\frac{10}{1}$ $\frac{1}{10}$ $\frac{100}{10}$ $\frac{1}{10}$ $\frac{101}{10}$ $10\frac{1}{10}$	(f) $\frac{8}{1} \frac{8}{5}$ $\frac{40}{5} \frac{8}{5}$ $\frac{48}{5} 9\frac{3}{5}$

Exercise 13.5

- **1.** Harry had = 12 caps He gave caps to his friend = 5 caps given caps The fraction of caps given by Harry to his friend
 - 5total caps 12
- 2. Arnold spends on shirts $\frac{1}{8}$ of his pocket money

Arnold spends on jeans $\frac{5}{12}$ of his pocket money Arnold spends on travelling $\frac{1}{4}$ of his pocket money So, the fraction of his pocket money he spends $\frac{\frac{1}{8}}{\frac{5}{12}} \quad \frac{\frac{1}{4}}{\frac{3}{24}} \quad \frac{10}{24} \quad [\because \text{ LCM of 8, 12 and } 4 = 24]$ **3.** Total length of wire $3\frac{5}{7}$ m $\frac{26}{7}$ m Length of piece was cut $1\frac{2}{7}$ m $\frac{9}{7}$ m Total length of remaining wire $\frac{26}{7}$ $\frac{9}{7}$ $\frac{26}{7}$ $\frac{9}{7}$ $\frac{17}{7}$ m 4. A man walked $1\frac{3}{5}$ km $\frac{8}{5}$ km He cycled $3\frac{4}{15}$ km $\frac{49}{15}$ km So, total distance covered by him $\frac{8}{5}$ $\frac{49}{15}$ $\frac{24 \quad 49}{15}$ [:: LCM of 5 and 15 = 15] $\frac{73}{15}$ $4\frac{13}{15}$

CHECK YOURSELF

1. to 4. As per answersheet.

14. Decimals

Exercise 14.1

- 1. and 2. As per answersheet.
- **3.** (a) Place value of 5 in $0.5 = \frac{5}{10}$

Here 5 is at tenths place, so we put one 0 in the denominator.

(b) Place value of
$$23.05 = \frac{5}{100}$$

Here 5 is at hundreths place, so we put two 0 in the denominator.

(c) 72.50 $\frac{5}{10}$

Here 5 is at tenths place, so we put one 0 in the denominator.

(d) 5.06 = 5

Here 5 is at ones place, so we put no zero in the denominator.

(e) 560.27 = 500

Here 5 is at hundred place, so we multiply by 100.

4. We can write the decimal numbers as a sum of whole and fractional numbers.

(a) 110.11	(b) 1.02	(c)	54.3	
$110 \frac{11}{100}$	$1 \frac{2}{100}$		54	$\frac{3}{10}$
(d) 405.03	(e) 102.632			
$405 \frac{3}{100}$	$102 \frac{632}{1000}$			

F	
Э	
_	-

	100	1000	0		
		Ones	Tenths	Hund- redths	Decimal number
(a)	9 tenths	0	9	0	0.9
(b)	6 tenths 7 hundredths	0	6	7	0.67
(c)	8 ones 9 tenths 6 hundredths	8	9	6	8.96
(d)	7 ones 5 hundredths	7	0	5	7.05

Exercise 14.2

- 1. We can express the proper fractions as decimals by putting the decimal at the number of places to which these are zeroes.
 - (a) $\frac{7}{10}$ one zero = 0.7 one place moved from right to left. (b) $\frac{5}{100}$ 0.05 (c) $\frac{11}{100}$ 0.11 (d) $\frac{9}{100}$ 0.09 (e) $\frac{18}{100}$ 0.18 (f) $\frac{25}{100}$ 0.25
- 2. We can express the improper fractions as decimal by shifting point right to left. We shift point at many 0 (zeroes) are there in denominator.
 - (a) $\frac{96}{10}$ here only one zero is in the denominator, so we shift point one place from right to left.

so, $\frac{96}{10}$ can be express as 9.6 as decimals.

- (b) For mixed fraction first we convert mixed fraction into improper fraction then shift the point.
 - $3\frac{1}{10} \quad \frac{3 \quad 10 \quad 1}{10}$

 $\frac{31}{10}$ now shift the point from right to left by one place.

So,
$$3\frac{1}{10}$$
 can be expressed as 3.1 as decimals.

(c) $\frac{145}{100}$ here two zeroes are in the denominator, so we shift point

from right to left by two place.

so, $\frac{145}{100}$ can be expressed as 1.45 as decimals.

(d) $\frac{189}{100}$ here two zeroes are in the denominator, so we shift point from right to left by two place

from right to left by two place.

so, $\frac{189}{100}$ can be expressed as 1.89 as decimals.

(e) $6\frac{1}{100}$, first we convert this into improper fraction

$$\frac{6 \ 100 \ 1}{100} \ \frac{601}{100}$$

Now shift the point from right to left by two places.

so, $6\frac{1}{100}$ can be expressed as 6.01 as decimals.

(f) $\frac{997}{100}$ here two zeroes are in the denominator, so we shift the

point from right to left by two places.

so, $\frac{997}{100}$ can be expressed as 9.99 as decimals.

3. (a) 1 tenth 6 hundredths

 $\frac{1}{10}$ $\frac{6}{100}$ 0.16

Now 0.16 can be expressed as a fraction by removing the point and putting zero in the denominator. We put zeroes in the denominator as much places after the decimal is from right to left.

Here in 0.16 decimal is after two places, so we put two zeroes in the denominator. So 0.16 can be expressed as fraction by $\frac{6}{100}$.

Similarly,

(b)
$$3.04 = \frac{304}{100}$$
 (c) $17.5 = \frac{175}{100}$ (d) $8.85 = \frac{885}{100}$

- 4. We know that the numbers having the point after same number of digits are called like decimals. So, 38.5, 78.2, 8.5, 9.3, 6.8
 9.35, 7.01, 9.09, 18.18, 9.75
- 5. For comparing decimal we start from the left and compare digits at same place one by one the number with greater digit at the same place will be greater.
 - (a) So, in 2.95 and 0.96

2 > 02.95 > 0.96 So. Similarly, (b) 8 = 8.000 \therefore 8 can be written as 8.000... So, 8 = 8 (c) 96.90 > 96.09(d) 500.5 = 500.500 $\therefore 9 = 9$ tens $\therefore 5 = 5$ hundreds 6 = 6 ones 0 = 0 tens 9 > 0 tenths 0 = 0 ones so, 96.90 > 96.095 = 5 tenths We can write 500.05 as 500.500 (f) 446.287 < 447.398(e) 3.93 > 3.90 $\therefore 3 = 3$ ones $\therefore 4 = 4$ hundreds 9 = 9 tenths 4 = 4 tens 3 > 0 hundredths 6 < 7So, 3.93 > 3.90 So, 446.287 < 447.398

CHECK YOURSELF

1. to 4. As per answersheet.

Exercise 15.1

(a) For writing the given time to the 24 hour system we write the given time as proper numeration and then remove minute separating collon at write hours instead of a.m. or p.m. 12:30 p.m. can be written as 1230 hours.

So 120 hours.

(b) 5:00 p.m. can be written as 05:00 p.m. as proper numeration. Now remove the minute separating collon and add 1200 to the hours. 0500

$ \begin{array}{r} 0500 \\ \underline{1200} \\ \underline{1700} \end{array} $	so 1700 ł	nours.		
Similarly,				
(c) $6:15 \text{ p.m.}$ 06:15 p.m. 0615 1200 1815 hours	(d)	11:35 a.m. = 1135 hours	(e)	12:05 p.m. = 1205 hours
Similarly,				
(f) 10:00 p.m.	(g)	12:50 p.m.	(h)	8 a.m.
1000 hours		= 1250 hours		= 08:00 a.m.
1200				= 0800 hours
2200 hours				

2. (a) The school's morning shift starts at 8:30 a.m.

The school's morning shift ends at 2:15 p.m. So the duration of school we find the duration into two parts

and then add them duration from 8:30 to noon = 3:30 duration from noon to 2:15 = 2:15 total duration = 3:30 = 2:15 = 2:15 = 2:15 = 35 minutes(b) Office lunch begins at = 1:40 p.m. duration = 35 minutes = 1 hour : 15 minutes(c) Circus evening show starts at = 7:15 p m

(c) Circus evening show starts at = 7:15 p.m. duration of show = 3 hours 15 minutes

The time of show closing = 7:153:1510:30

So, the show is over at 10:30 p.m.

C.B.R.MODERN SR.SEC.SCHOOL BAHALA REWARI Page 82 of 105

(d) Computer evening class starts = 5:45 p.m. it ends at = 8:30 p.m. 45 minutes can not be subtra-So, duration of the class $= 3 \div 30$ cted from 30 so we carry over 1 = 5:45= 2:45 hour from 8 hour to 30 minutes so, 90-45 minute = 45 minutes So, durationg of class = 2 hours 45 minutes. 3. (a) We know 1 hour = 60 min(b) \therefore 1 hour = 60 min 9 hours = 9×60 min $11 \text{ hours} = 11 \times 60 \text{ min}$ = 540 min= 660 min(c) :: 1 hour = 60 min $3 \text{ hours } 25 \text{ min} = 3 \times 60 + 25 \text{ min}$ $= 180 + 25 \min$ $= 205 \min$ (d) :: 1 hour = 60 min 6 hours 17 min = $6 \times 60 + 17$ min = 360 + 17= 377 min **4.** (a) We know that (b) $:: 1 \min = 60 \sec$ $\therefore 1 \text{ min} = 60 \text{ sec}$ $17 \min = 17 \times 60 \text{ sec}$ $4 \min = 4 \times 60 \text{ sec}$ = 1020 sec= 240 sec(c) $:: 1 \min = 60 \sec$ (d) $1 \min = 60 \sec$ 10 min 17 sec 36 min 48 sec $= 10 \times 60 + 17$ sec $= 36 \times 60 + 48 \text{ sec}$ = 600 + 17 sec= 2160 + 48 sec= 2208 sec = 617 sec5. (a) We know that (b) \therefore 1 day = 24 hours $680 \text{ hours} = 680 \div 24$ \therefore 1 day = 24 hours $215 \text{ hours} = 215 \div 24$ 24) 680 (28 days -48 24) 215 (8 days 200 -192-19223 hours 8 hours so, 215 hours = 8 days 23 hours so, 680 hours = 28 days 8 hours

C.B.R.MODERN SR.SEC.SCHOOL BAHALA REWARI

Page 83 of 105

(c) \therefore 1 day = 24 hours (d) \therefore 1 day = 24 hours $115 \text{ hours} = 115 \div 24$ 56 hours = $56 \div 24$ 24) 115 (4 days 24) 56 (2 days -96 -48 19 hours 8 hours so, 115 hours so, 56 hours = 4 days 19 hours= 2 days 8 hours **6.** (a) We know that 1 day = 24 hours \therefore 1 day = 24 hours $3 \text{ days} = 3 \times 24 \text{ hours}$ = 72 hours (b) We know that 1 week = 7 days \therefore 1 day = 24 hours 1 week = 7 days = 7×24 hours = 168 hours (c) \therefore 1 day = 24 hours 4 days 5 hours = $4 \times 24 + 5$ hours = 101 hours (d) :: 1 day = 24 hours $17 \text{ days } 10 \text{ hours} = 17 \times 24 + 10 \text{ hours}$ = 408 + 10 hours = 1418 hours

Exercise 15.2

1. (a) 1 111 7 5348 <u>+</u>9 1725So, we write 13 under sec $73 \rightarrow 73$ sec. = 1 min 13 sec. 1771and carry 1 min to min. Ŧ Ŧ Ļ 1711 13 \longrightarrow 71 min. = 1 hour 11 min

So we write 11 under min and carry 1 hour to hours.

So, 17 hours 11 min 13 sec.

Similarly,

(b)	1	11		
	3	38	50	
	+4	56	25	
	8	95	75	
	Ļ	Ļ	ţ	
	8	35	15	75 sec. = 1 min. 15 sec.

(c)
$$3 \frac{11}{15} \frac{11}{35} \frac{11}{35} \frac{11}{35} \frac{11}{4} \frac{1}{10 - 41 - 20}$$

 $\therefore 60 \sec = 1 \min 20 \sec (4) \frac{1}{4} \frac{1}{3 - 15} \frac{1}{40} \frac{1}{4 - 36 - 20} \frac{1}{4 - 6 - 35 - 22} \frac{1}{87 - 82 \rightarrow} \therefore 82 \sec = 1 \min 22 \sec \frac{1}{4 - 14 - 27 - 22} \frac{1}{87 - 82 \rightarrow} \therefore 87 \min = 1 \text{ hour } 27 \min 2.$
(a) 5 hours 30 minutes = 5:30
6 hours 40 minutes = 6:40
their sum $\frac{11}{5} : 30 \frac{1}{4 - 6 + 6 - 40} \frac{1}{12 \cdot 10} \because 70 \min = 1 \text{ hour } 10 \min 30 \frac{1}{12 \cdot 10} \frac{1}{12 \cdot 10} \because 70 \min = 1 \text{ hour } 10 \min 30 \frac{1}{12 \cdot 10} \frac{1}{12 \cdot 10} \frac{1}{12 \cdot 10} \cdots 70 \min = 1 \text{ hour } 10 \min 30 \frac{1}{12 \cdot 10} \frac{1}{12 \cdot 10} \frac{1}{12 \cdot 10} \cdots 70 \min = 1 \text{ hour } 10 \min 30 \frac{1}{12 \cdot 10} \frac{1}{12 \cdot 10$

3. (a) 1 15 2 15 6 cannot be subtracted from 5. 25:35So we take 1 carry from 3 to 5. -17:16Now 15 - 6 = 908:19(b) 2545 min cannot be subtracted from 10 min. 36:10 So we carry 1 hour. -19:45Now $60 + 10 = 70 \min - 45 \min = 25 \min$ 16:25Write 25 under the min. 24 + 60 - 35 = 49 $3\,15$ $2\,10$ (d) (c) $2 \, 17$ 37 45 30 4 4 $2-5 \rightarrow 25 + 60 = 85 - 35$ 25 25 -18 2615= 50-1535351919159 49 504. (a) 34 min 20 sec (b) 9 hr 10 min 10 sec 13 min 10 sec 2 hr 5 min 5 secdifference 34:20difference 9 10 10 -2 05 05 -13:1021:10 $7 \ 05 \ 05$ (c) 24 hr 35 min 15 hr 15 min 1 14 difference 24 35 -15 15 9 20(d) 11 hr 15 min 20 sec. 4 hr 20 min 30 sec. \longrightarrow 14 + 60 = 74 - 20 = 54 10 14 difference $\overline{11}$ $\overline{15}$ $20 \rightarrow 20 + 60 = 80 - 30 = 50$ $-4\ 20\ 30$ $6\ 54\ 50$ hr min sec hrmin hr min (b) sec **5.** (a) (c) $\mathbf{2}$ 125 51532255 × 8 × 3 $\times 5$ 36 4575⁻25 10 40 40 251611515 12 (d) min sec (e) 10 10 $\times 5$ 75 min = 1 hr 15 min $\times 5$ 60-→ 60 sec. = 1 min 505076 00 min sec (f) 25 30 $\times 2$ $60 \rightarrow 60 \text{ sec} = 1 \text{ min}$ 5100

Page 86 of 105

6.	(a)	hr min 13 30	(b)	min sec 10 15
		× 5		× 5
		$\frac{150}{67 \ 30} \xrightarrow{150 \text{ min}} = 2 \text{ hr } 30$	min	$ \begin{array}{r} \hline 75 \rightarrow 75 \text{ sec} \\ \hline 51 15 \end{array} = 1 \text{ min } 15 \text{ sec} $
	$\langle \rangle$	07 30		01 10
	(c)	$rac{hr}{2}$ min sec	(d)	min sec 5 23
		× 9		× 9
		$\frac{72}{18 \ 46 \ 12} \xrightarrow{72 \ \text{sec}} = 1 \ \text{mi}$	n 12 sec	$\frac{207}{48} \xrightarrow{207} = 3 \min 27 \sec \frac{1}{27}$
7.	(a)	1 3	(b) 5	
	()	15) 15 45 (7) 37 (18 7) 126 (
		$\frac{-15}{0\ 45}$	-35	$\frac{-7\downarrow}{56}$
		$0\ 45$		
		$-45 \over 0$	$2 \min = 120 \mathrm{s}$	ec $\frac{-56}{0}$
	5	So, 1 hr 3 min	$120 + 6 \sec = 12$	26 sec So, 5 min 18 sec
	(c)	5 5	(d) $\frac{2}{8 18}$	20
		6)3030(8) 18 (—16	8) 160 (
		$\begin{array}{c} 6 \overline{\smash{\big)}30} & 30 \\ \underline{30} & \downarrow \downarrow \\ \hline \times & 30 \end{array}$	$\frac{-16}{2}$	$\frac{-160}{0}$
		$\frac{30}{0}$	2 hours = 120	min So, $2 \text{ hr } 20 \text{ min}$
		0	= 120 + 40 mir	
		So, 5 min 5 sec		
	(e)		(f)	6 20)121(
		14) 34(
		$\frac{-28}{6}$		$\frac{-120}{1}$
		6 hr = 360 min		1 hour = 60 min
		$= 360 + 43 \min = 4$	403 min	= 60 + 41 min = 101 min
		28		$5 \sqrt{5}$
		14)403(-284		20)101(-100
		$\frac{-28}{123}$		1
		<u>-112</u>		$1 \min = 60 \sec$
		11		$60 + 40 \sec = 100 \sec$
		$11 \min = 660 \sec 48$	= 660 + 12 sec =	672 sec 5
		48 14) 672 (20 100
		-56+		$\frac{-100}{0}$
		$112 \\ -112$		
		$\frac{-112}{0}$ 48 s	ec	So, 6 hr 5 min 5 sec
		So, 2 hr 28 min 48		
			1107	

(g) 5 (h) 516 86 5 26 -25-801 hr = 60 min6 hr = 360 min $60 + 36 \min = 96 \min$ $360 + 14 = 374 \min$ 19 235 96 16) 374 $\frac{-32}{54}$ $\frac{-5\downarrow}{46}$ $-48 \\ 1$ $1 \min = 60 \sec$ $6 \min = 360 \sec$ $60 + 30 \min = 90 \sec$ $360 + 8 \sec = 368 \sec$ 2318 5 90 (16) 368 $\frac{\begin{array}{c} -5 \\ -5 \end{array}}{40} \\ -40 \\ \hline 0 \end{array}$ $\frac{-32}{48}$ $\frac{-48}{0}$ So, 5 hr 19 min 18 sec So, 5 hr 23 min 23 sec 8. One cake take time for bake = 3 hr 21 min5 cakes will take time = $\frac{hr}{a}$ min 3 21 $\frac{\times 5}{105} \rightarrow 105 \text{ min} = 1 \text{ hr } 45 \text{ min}$ $16 \ 45$ So, 5 cakes will take the time of 16 hr 45 min to bake. **9.** Train started from Delhi at = 0645 hours Train reached at Kanpur at = 1415 hours 1415 Time taken by the train to cover distance = -0645 7:30We cannot subtract 45 from 15, so we carry 1 hr to min 15 + 60 = 7575 - 45 = 30So, 7 hr 30 min **10.** Ankur left for his school at = 7:25 a.m. Ankur came back from school at = 1:15 p.m. 4:35The time spend by Ankur at school 1:15= time of left to noon + time after noon to came back 5:50= 7:25 a.m. to noon + noon to 1:15 p.m. = 4:35 + 1:15Ankur spend 5 hr 50 min at school.

Exercise 15.3 1. (a) :: 1 month = 30 days 5 months 12 days = $5 \times 30 + 12$ days = 150 + 12 days = 162 days(b) \therefore 1 week = 7 days 8 weeks 4 days = $8 \times 7 + 4$ days = 56 + 4 days = 60 days(c) \therefore 1 year = 365 days 1 year 2 weeks = $1 \times 365 + 7 \times 2$ days = 365 + 14 days = 379 days(d) :: 1 month = 30 days 7 months 3 weeks and 2 days = $7 \times 30 + 3 \times 7 + 2$ days $-910 \pm 91 \pm 9$ dave **2.** (a) :: 1 week = 7 days ($98 \text{ days} = 94 \div 7$ = 14 weeks

- (c) \therefore 1 year = 52 weeks $2 \text{ years} = 52 \times 2$ = 104 weeks
- **3.** (a) :: 1 week = 7 days $35 \text{ days} = 35 \div 7$ = 5 weeks
 - (c) \therefore 1 week = 7 days 236 days = 33 weeks 5 days

- (c) \therefore 1 year = 12 months 90 days = 3 months1 year 90 days = 12 + 3 months
 - = 15 months

(b) \therefore 1 week = 7 days 115 days = 16 weeks 3 days

(d) \therefore 1 week = 7 days

$$486 \text{ days} = 69 \text{ weeks } 3 \text{ days}$$

(b) \therefore 1 month = 30 days 365 days = 12 months

(d) \therefore 1 year = 12 months 3 years 3 months $= 12 \times 3 + 3$ months = 39 months

C.B.R.MODERN SR.SEC.SCHOOL BAHALA REWARI Page 89 of 105

5.	(a) $:: 52$ weeks = 1 year (b) $:: 52$ weeks = 1 year
	75 weeks = 1 year 23 weeks 106 weeks = 2 years 2 weeks
	(c) \therefore 52 weeks = 1 year (d) \therefore 52 weeks = 1 year
	321 weeks 540 weeks
	= 6 years 9 weeks = 10 years 20 weeks
6.	(a) :: 12 months = 1 year (b) :: 12 months = 1 year
	34 months 41 months
	= 2 years 10 months = 3 years 5 months
	(c) \therefore 12 months = 1 year (d) \therefore 12 months = 1 year
	90 months 210 months
	= 7 years 6 months = 17 years 6 months
7.	July has 31 days so the days between 29 July and 18 August
	= 2 + 18 = 20 days
8.	Soni takes singing lesson every day for = 1 hour 15 minutes
	She spend on singing in a week = $hr min$
	1 15
	$\frac{\times 7}{105 \rightarrow 105 \text{ min}} = 1 \text{ hr } 45 \text{ min}$
	She spend 8 hours 45 min. 8 45
9.	Tailor stitches 5 shirts in = 6 hours 15 minutes
	Time taken for stitching 1 shirt = $5 \int 6 (1)$
	$= 60 + 15 = 75$ min. $\frac{-5}{1} \rightarrow 1$ hr = 60 min
	So, 1 hr 15 min is taken to stitch 1 shirt $5\overline{)75}(15)$
	So, the time required for 4 shirt = $\frac{-5}{25}$
	$\begin{array}{cccccccc} 1 & 15 & & 25 \\ \times & 4 & & -25 \end{array}$
	$\frac{\times 4}{60 \to 60 \text{ min} = 1 \text{ hr } 00 \text{ min}} = \frac{-25}{\times}$
	5 00
	So, he takes 5 hr to stitch 4 shirts.
СНЕ	

CHECK YOURSELF

1. to 4. As per answersheet.

Exercise 16.1

1. (a) :: 1 p =
$$\overline{\underbrace{1}_{100}}$$

65 p $\overline{\underbrace{65}_{100}}$ $\overline{\underbrace{65}_{0.65}}$ (b) :: 1 p = $\overline{\underbrace{1}_{100}}$
98 p $\overline{\underbrace{98}_{100}}$ $\overline{\underbrace{0.98}}$

	(c)	\therefore 1 p = ₹ $\frac{1}{100}$	(d) ::	1 p = ₹	₹ <u>1</u> 100
		170 p ₹ $\frac{170}{100}$ ₹1.70		296 p	₹ <u>296</u> 100 ₹2.96
	(e)	$\therefore 1 p = ₹ \frac{1}{100}$			
		274 p ₹ $\frac{274}{100}$ ₹2.74			
2.	(a)	∵ ₹ 1 = 100p	(b) ∵ ₹	1 = 100)p
		₹18.13 = 18.13 × 100	p ₹6	5.03 =	65.03×100 p
		= 1813 p		=	6503 p
	(c)	∵ ₹ 1 = 100p	(d) ∵ ₹	1 = 100)p
	. ,	₹51.15 = 51.15 × 100	p ₹1	3.52 =	13.52×100 p
		= 5115p	<u>1</u>		1352p
	(e)	∵ ₹ 1 = 100p			10020
	(0)	₹421.6 = 421.6 × 100)n		
		= 42160 p)P		
3.	(a)		[1]		111
J.	(a)	₹1256.72	₹2132.13	(c)	₹6107.04
		$\frac{+ \underbrace{}_{} 7 9 . 9 3}{\underbrace{}_{} 1 3 3 6 . 6 5}$	₹2501.05		₹1853.14
		₹1336.65	+₹ 11.39		+₹ 250.41
	(d)	1	₹4644.57		₹8210.59
	(01)	₹1056.10			
		₹2317.50			
		$\frac{+ \underbrace{1}_{ \underbrace{0}} 0 . 0 0}{\underbrace{3}_{ \underbrace{3}} 4 7 3 . 6 0}$			
4.	(a)	010 413 (b) ₹+7-0895-3	49911 12 ₹5-0-0-220	(c)	6151111 10 ₹7642.07
			-₹4259.70		-₹6721.70
		$\frac{-\cancel{7}}{\cancel{7}} \frac{189.35}{900.18}$	₹ 742.50		₹ 890.37
	(d)	21711		-	
		₹3810.50			
		-₹1950.10			
-		₹1860.40	3050.00		
5.	(a)	Sam purchased cloth = $\frac{1}{2}$			
		Sam purchased calcula			
		Sam purchased dry fru			
		He s	spend total =		56.92 58.56
		~ .			06.75
		So, he spent ₹1432.23 i	n all.		32.23

(b) Mohan purchased V.C.D. for $= ₹9528.50$			
Mohan purchased bicycle for = ₹1	852.64		
	I II ₹ 9528.50		
	+₹ 1852.64		
So, Mohan pay for these articles =			
(c) Bike costs = ₹ 9527.85			
Camera costs =₹ 1251.50			
Total costs = \square			
₹ 9527.85	5		
+₹ 1251.50)		
₹10779.38	5		
(d) A cooler costs = ₹4156.60			
Another cooler costs = ₹3084.75	15 15 15 10		
Difference between their costs =	₹4156.60		
	–₹3084.75		
-	₹1071.85		

Exercise 16.2

1.	(a)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(b)	$ \begin{array}{r} \textcircled{1} \hline 1 \\ \hline \hline \\ \hline \\$
	(c)	$ \begin{array}{r} 2 & 2 \\ 6 & 7 \\ \hline 7 & 7 \\ \hline 8 & 2 & 8 & 0 & 0 & 0 & 9 \\ & \times & 3 & 8 \\ \hline 2 & 2 & 4 & 0 & 0 & . & 7 & 2 \\ & + & 8 & 4 & 0 & 0 & 2 & . & 7 & 0 \\ \hline \hline \hline $ & 1 & 0 & 6 & 4 & 0 & 3 & . & 4 & 2 \\ \end{array} $	(d)	$ \begin{array}{r} $
2.	(a)	$ \begin{array}{r} 2 1 \\ 3 2 \\ \hline 3 9.95 \\ \times 34 \\ \hline 3 9.80 \\ + 298.50 \\ \hline \hline 3 38.30 \\ \end{array} $	(b)	$ \begin{array}{c} 132 \\ \overline{2} \\ \overline{32} \\ \overline{2} \\ \overline{32} \\ $

	(c)	
		⊥ ⊥ ⊉ ₹70.48
		$\frac{\times 2 \ 3}{2 \ 1 \ 1 \ . \ 4 \ 4}$
		$\frac{+1409.60}{\overline{1621.04}}$
		₹1621.04
3.	(a)	32) 4939.2 (154.35
	()	-32
		173
		$\frac{-160}{139}$
		$\frac{-128}{112}$
		160
		-160
		0
		So, ₹4939.2 ÷ 32 = ₹154.35
	(c)	21)4962.51(236.31
		$\frac{-42}{76}$
		-63
		$132 \\ -126$
		$\frac{-126}{65}$
		<u>63</u>
		21
		$\begin{array}{r} 21 \\ -21 \\ \hline 0 \end{array}$
		So, ₹4962.51 ÷ 21 = ₹236.31
4.	(a)	18) 4742.46(263.47
		<u>-36</u>
		114
		$\frac{-108}{62}$
		-54
		84
		126

(d)	12 4 ₹61.25
	×18
	490.00
	+ 6 1 2 . 5 0
	₹1102.50

(b)
$$28\overline{)7185.64}(256.63)$$

 -56
 158
 -140
 185
 -168
 176
 -168
 84
 -84
 0

- So, ₹7185.64 ÷ 28 **=** ₹256.63
- (d) 34)12066.26(354.89 -102186 $\frac{-170}{166}$

$$\begin{array}{r} -136 \\
 -136 \\
 -272 \\
 -272 \\
 -306 \\
 -306 \\
 0
 \end{array}$$

So, ₹12066.26 ÷ 34 **=** ₹354.89

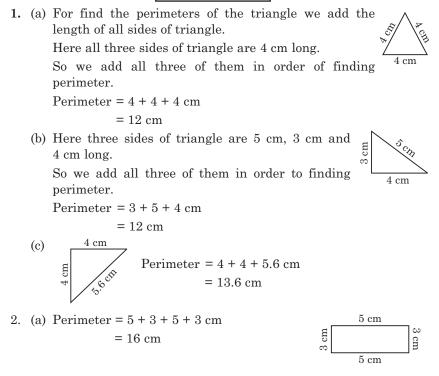
(b)
$$37) 9503.08(256.84)$$

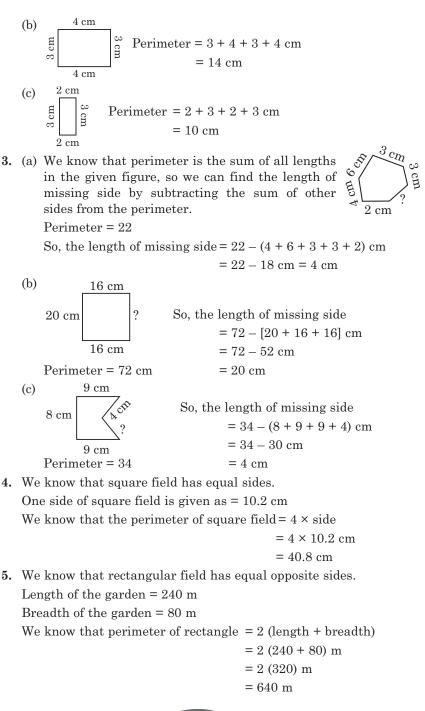
 -74
 210
 -185
 253
 -222
 310
 -296
 148
 -148
 8

 $\frac{-126}{0}$

So, ₹4742.46 ÷ 18 = ₹263.47 So, ₹9503.08 ÷ 37 = ₹256.84

	(c)	56) 5594.4 (99.9 (d) -504 -504 -504 -504 -504 0	$\begin{array}{r} 43)\overline{17748.25}(412.75)\\ \underline{-172}\\ 54\\ \underline{-43}\\ 118\\ \underline{-86}\\ 322\\ \underline{-301}\\ 215\\ \underline{-215}\\ 0\end{array}$
		So, ₹5594.4 ÷ 56 = ₹99.9	So, ₹17748.25 ÷ 43 = ₹412.75
5.	(a)	Price of an inventor = ₹ 4,321.60	1
		The price of 36 such invertors =	11 <u>3</u> ₹4321.60
			× 3 6
			25929.60 + 1 2 9 6 4 8 . 0 0
			₹155577.60
	(b)	Price of one leather jacket = 1680. The price of 68 such jackets =	.50
			$ \begin{array}{r} 1 3 4 4 4 .00 \\ + 1 0 0 8 3 0 .00 \\ \hline ₹ 1 1 4 2 7 4 .00 \end{array} $
		One electric cooler costs = 6259.42 The cost of 19 such coolers =	2 2433 1 ₹6254.42 ×19
			$\frac{\times 1.9}{5.6289.78}$
			+62544.20
	 ₹ 1 1 8 3 3 8 . 9 8 (d) The tour expenses for 38 girls are = ₹9665.30 The amount paid by each girl = 38) 9665.30 (254.35) 		
		The amount paid by each girl – :	$ \begin{array}{c c} -76 \downarrow \\ \hline 206 \\ -190 \downarrow \\ \hline 165 \\ -152 \downarrow \\ \hline 133 \\ -114 \\ \hline 190 \end{array} $
		So, each girl paid ₹254.35.	-190 0


(e) The cost of 14 equal gold ring = ₹18799.76


The cost of one ring = 14)18799.76(1342.84)

 $\begin{array}{c|c} -14 \downarrow \\ \hline 47 \\ -42 \downarrow \\ \hline 59 \\ -56 \downarrow \\ \hline 39 \\ -28 \downarrow \\ \hline 117 \\ -112 \downarrow \\ \hline 56 \\ -56 \\ \hline 0 \\ \hline \end{array}$

CHECK YOURSELF

1. to 4. As per answersheet.

C.B.R.MODERN SR.SEC.SCHOOL BAHALA REWARI Page 96 of 105

6. The number of tree can be planted around the rectangular plot = Perimeter $\div 4$ So, the perimeter of rectangular plot = 2 (length + breadth) = 2 (300 + 200) m= 2 (500) m= 1000 mSo, number of tree = $1000 \div 4$ = 250 trees can be planted at a distance of 4 metres each. 7. Length of the rectangular frame = 24 cmBreadth of the rectangular frame = 20 cmSo, the perimeter of rectangular frame = 2 (length + breadth) = 2 (24+20) cm= 2 (44) cm = 88 cm8. Side of square field = 160 mTotal distance covered by walking around its boundary = Perimeter of field. Perimeter of square field $= 4 \times \text{side}$ $= 4 \times 160 \text{ m}$ = 640 m9. The total length of wire to fence 3 times around the field = $3 \times$ perimeter of the field 40 m Perimeter of the field = 60 + 40 + 40 + 90 m = 230 m90 m Length of wire required $= 3 \times \text{perimeter}$ $= 3 \times 230 \text{ m}$ = 690 m Wire costs = ₹10 per meter Total cost of fencing = $\overline{\langle (10 \times 690) \rangle} = \overline{\langle 6900 \rangle}$ 10. The side of the equilateral triangle = 25 mThe cost of making path = ₹50 per metre The cost of making path around the park = Perimeter of the park \times ₹50 Perimeter of equilateral triangle = 25×3 m = 75 m = 75 × ₹50 Cost of making path = ₹3750

 $+ (42 \times 100) + 12 \text{ cm}$

CHECK YOURSELF

1. to 4. As per answersheet.

18. Measurement

Exercise 18.1

(b) :: 1 m = 10 dm**1.** (a) :: 1 km = 1000 m3 km 255 m 7 m 45 dm $= 3 \times 1000 + 255$ m $= 7 \times 10 + 45 \text{ dm}$ = 70 + 45 dm= 3000 + 255 m= 115 dm = 3255 m(c) :: 1 m = 100 cm(d) :: 1 cm = 10 mm5 m 25 cm 62 cm 4 mm $= 5 \times 100 + 25$ cm $= 62 \times 10 + 4 \text{ mm}$ = 500 + 25 cm = 620 + 4 mm= 525 cm= 624 mm(e) \therefore 1 dm = 10 cm (f) :: 1 m = 1000 mm13 dm 5 cm 9 m 82 mm $= 13 \times 10 + 5$ cm $= 9 \times 1000 + 82 \text{ mm}$ = 130 + 5 cm= 9000 + 82 mm= 9082 mm= 135 cm(g) :: 1 m = 100 cm(h) :: 1 km = 1000 m4 m 3 dm 1 m = 100 cm $= 4 \times 100 + 3 \times 10$ cm 6 km 42 m = 400 + 30 + 2 cm $= (6 \times 1000) \times 100$ = 430 + 2 cm = 432 cm= 600000 + 4200 + 12 cm = 604212 cm (i) :: 1 m = 10 dm $7 \text{ m} 5 \text{ dm} = 7 \times 10 + 5 \text{ dm}$ = 75 dm 2. (a) We know that 1 cm $\frac{1}{100}$ m (b) 1 m = 100 cm (c) 1 km = 100 m(d) 1 dam = 10 m(e) 1 cg = 10 mg(g) 1 kg = 1000 g(f) 1 g = 100 cg(h) 1 dag = 10 g

Page 98 of 105

3. (a)
$$\because 1 \text{ hm} \frac{1}{10} \text{ km}$$
 (b) $\because 1 \text{ dam} \frac{1}{100} \text{ km}$
 $3275 \text{ hm} \frac{3275}{10} \text{ km}$ $2546 \text{ dam} \frac{2546}{100} \text{ km}$
 $= 327.5 \text{ km}$ $= 25.46 \text{ km}$
(c) $\because 1 \text{ m} \frac{1}{1000} \text{ km}$ (d) $\because 1 \text{ dm} \frac{1}{10000} \text{ km}$
 $8506 \text{ m} \frac{8506}{1000} \text{ km}$ $645769 \text{ dm} \frac{645769}{10000} \text{ km}$
 $= 8.506 \text{ km}$ $= 64.5769 \text{ km}$

- (a) We can measure the distance between Delhi and Mumbai only by km. So, km.
 - (b) We can measure the length of a pencil only by cm. So, cm.
 - (c) We can measure the length of a park only by m. So, m.
 - (d) We can measure the thickness of a book only by mm. So, **mm**.
 - (e) We can measure the length of our desk only by m. So, m.

Exercise 18.2

1. (a)
$$\because 1 \text{ kg} = 1000 \text{ g}$$

 $12 \text{ kg} = 12 \times 1000 \text{ g}$
 $= 12000 \text{ g}$
(b) $\because 1 \text{ kg} = 1000 \text{ g}$
 $7 \text{ kg} 256 \text{ g}$
 $= 7 \times 1000 + 256 \text{ g}$
 $= 7256 \text{ g}$

	(c) :	• 1 kg = 1000 g		
		$15 \text{ kg} 15 \text{ g} = 15 \times 1000$	+ 15 g	
		= 15015 g	0	
2.	(a) 😳	· 1 g = 1000 mg	(b)	∵ 1 g = 1000 mg
	. /	$19 \text{ g} = 19 \times 1000 \text{ mg}$		25 g 25 mg
		= 19000 mg		$= 25 \times 1000 + 25 \text{ mg}$
		0		= 25025 mg
	(c) :	· 1 g = 1000 mg		0
		$82 \text{ g} 82 \text{ mg} = 82 \times 1000 +$	- 82 mg	
		= 82082 mg	0	
3.	(a) :	$\cdot 1 \text{ g} \frac{1}{1000} \text{ kg}$	(b) ::	$1 \text{ g} \frac{1}{1000} \text{ kg}$
		2387 g $\frac{2387}{1000}$ kg		$6700 \text{ g} \frac{6700}{1000} \text{ kg}$
		= 2.387 kg		= 6.7 kg
	(c) :	$1 \text{ g} = \frac{1}{1000} \text{ kg}$		
		$8080 \text{ g} \frac{8080}{1000} \text{ kg} = 8.08 \text{ kg}$	rg	
4.	(a)	g mg	(b)	kg g
		$\begin{array}{c}1\\4&4&1&2&2\end{array}$		$\begin{bmatrix} 1 \\ 6 & 4 & 1 & 7 & 2 \end{bmatrix}$
		75 000		8 400
		+9 070		$+15\ 215$
		128 192		87 787
	(c)	kg g [1][1]	(d)	$ \begin{array}{ccc} g & mg \\ \hline 1 & \hline 1 & \hline 1 \end{array} $
		29 000		$\overline{4}$ $\overline{0}$ $\overline{6}$ $\overline{0}$
		31 950		19 175
		+ 825 61775		$\begin{array}{rrrr} + 4 & 2 & 6 & 2 & 5 \\ \hline 6 & 5 & 8 & 6 & 0 \end{array}$
5.	(a)	10	(b)	12
J.	(a)	21190 13	(b)	7123 1010
		8201.3 -1995.7		1884.20 -1656.82
		$\frac{-1335.7}{1205.6}$		$\frac{-1030.82}{0177.28}$
	(c)	11 41610	(d)	7 12
	. /	$2\overline{2}83.570$	~ /	513 8 . 2 4
		-1831.281		$\frac{-2020.31}{3117.93}$
		0352.289		0111.00

Exer	cise ⁻	18.3		
1.	(a) :	$1 \ kl = 1000 \ l$	(b) ::	1 kl = 1000 <i>l</i>
		$15 \ kl = 15 \times 1000 \ l$		8 kl 8 l
		$= 15000 \ l$		$= 8 \times 1000 + 8 l$
				= 8008 <i>l</i>
	(c) :	$1 \ kl = 1000 \ l$		
		$12 \ kl \ 265 \ l = 12 \times 100$	$00 + 265 \ l = 12$	265 l
2.	(a) :	$l = 1000 \ ml$	(b) ::	$1 \ l = 1000 \ ml$
		$28 \ l = 28 \times 1000 \ ml$		7 l 270 ml
		$= 28000 \ ml$:	$= 7 \times 1000 + 270 \ ml$
			:	= 7270 <i>ml</i>
	(c) :	$\cdot \ 1 \ l = 1000 \ ml$		
		$10 \ l \ 450 \ ml = 10 \times 10$	00 + 450 ml =	$10450 \ ml$
3.	(a) :	$\cdot 1000 \ l = 1 \ kl$	(b) ::	$1000 \ l = 1 \ kl$
		$62000 \ l = 62 \ kl$		7280 $l = 7.280 \ kl$
	(c) :	$\cdot 1000 \ l = 1 \ kl$		
		$15255 \ l = 15.255 \ kl$		
4.	(a)	l ml	(b)	$l ml$ $\boxed{1}$ $\boxed{11}$
		34000		
		47 020		8 074
		+5 160 86 180		+12135 23264
	(a)	kl l		$\frac{l}{kl}$
	(c)	1 1	(d)	1
		$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		$\begin{array}{ccc} 7 & 1 \ 1 \ 5 \\ 8 \ 4 & 0 \ 7 \ 0 \end{array}$
		$\frac{13}{24}$ $\frac{13}{235}$		+21 210
				1 1 2 3 9 5
5.	(a)		(b)	51412
		215 311 子584 1 5		- 652 37 - 38905
		-170125		26332
		188290		
	(c)	512613	(d)	3111410 3910
		-5834.6		- 4250.400 -3596.146
		439.2		654.254

Exer	cise 18.4	km m
1.	Mr Gupta travles on foot = 1 km 375 m	1 11
	Mr Gupta travels by bus = $5 \text{ km } 725 \text{ m}$	$\begin{array}{ccc}1&3&7&5\\5&7&2&5\end{array}$
	Mr Gupta travels by train = 12 km 150 m	+12 150
	Total distance travelled by him =	19 250
	So, Mr Gupta travelled 19 km 250 m in all.	
2.	Lakshmi buys silk cloth = 2 m 20 cm	
	Lakshmi buys cotton $cloth = 925 cm$	
	Total length of cloth she bought = $\begin{bmatrix} m & cm \\ 2 & 0 & 2 & 0 \end{bmatrix}$	
	So, Lakshmi buys 2m 945 cm + 9 2 5	
	cloth in all. 2945	
3.	Two heaps of rice together weigh = $5 \text{ kg } 250 \text{ g}$	
	One heap weighs = 3 kg 252 g	
	kg g (4) [1][14][0]	
	5 25-0	
	+3 252	
	Other heap weighs = $1 998$	
4.	Container has oil = 5 l 250 ml	
	Man takes out oil = $2 l 100 ml$	
	He spill oil = $1 l 200 ml$	
	So, oil left in the container = $5 l 250 ml - 2 l 100 ml -$	1 l 200 ml
	$egin{array}{cccc} l & ml & & \begin{matrix} l & ml \\ \hline 4 & \hline 12 \\ -2 & 1 & 0 & 0 & 5 & 2 & 5 & 0 \end{array}$	
	$\begin{array}{c c} -1 & 2 & 0 & 0 \\ \hline 3 & 3 & 0 & 0 \end{array} \qquad \begin{array}{c} -3 & 3 & 0 & 0 \\ \hline 1 & 9 & 5 & 0 \end{array}$	
5.	Dick weighs = $25 \text{ kg} 250 \text{ g}$	kg g
	Dick's father weighs = 3 times Dick's weight	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	So, Dick's father weigh = $75 \text{ kg} 750 \text{ g}$	25 250 ×3
6.	A tin has = 20 pastries	75750
	The tin with pastries = $1 \text{ kg } 750 \text{ g}$	
	Each pastry weighs = 50 g	kg g
	Empty tin weight = 1 kg 750 g – $[50 \times 20 \text{ gm}]$	1750 1000
	= 1 kg 750 g - [1000 gm = 1 kg]	$-\frac{1}{0}$ $\frac{000}{750}$
	So, empty tin weight = 750 g	

CHECK YOURSELF

1. to 4. As per answersheet.

19. Pictographs

- 1. to 7. Do yourself.
 - 8. (a) There are 23 kite icons are three in the table so by the scale. The sold kites $= 23 \times 6 = 144$
 - (b) It is visible that on Tuesday there are maximum icons in the table. So, on Tuesday there was the maximum sale.
 - (c) On Monday and Friday the icons of kite are same. So the sale on these days was also the same.
 - (d) On Wednesday there are minimums icons in the table. So on Wednesday there was the minimum sale.

CHECK YOURSELF

1. to 4. As per answersheet.

20. Geometry

Exercise 20.1

- 1. Do yourself.
- 2. (a) The given figure has 4 line segments. AB, BC, CD and DA.
 - (b) The given figure has 4 line segments. AB, BC, CD and DA.
 - (c) The given figure has 3 line segments. AB, BC and CA.
 - (d) The given figure has 6 line segments. AB, BC, CD, DE, EF and FA.
 - (e) The given figure has 6 lines segments AB, BC, CD, DE, EF and FA.
 - (f) The given figure has 4 line segments. AB, BC, CD and DA.
- **3.** (a) The given figure has two end points on both the ends. So it represent line segment.
 - (b) The given figure has one end point and one arrow on the another end. So it represent ray.
 - (c) The given figure has two arrow on both the ends. So, it represent line.

Exercise 20.2

- (a) It is visible from the given figure that point A is enclosed by the angle. So, it lies in interior of the angle POQ.
 - (b) It is visible from the given figure that point B is enclosed by the angle. So we can say that lies in interior of the angle POQ.
 - (c) It is visible from the given figure that point C is not enclosed by the angle. So, we can say that it lies in the exterior of the angle POQ.

- (d) It is visible from the given figure that point D is not enclosed by the angle. So we can say that it lies in the exterior of the angle POQ.
- (e) It is visible from the given figure that point P, O and Q lies on the common boundary.
- 2. (a) Vertex B (b) Vertex Q (c) Vertex Ysides - AB, BC sides - PQ, QR sides - XY, YZ
- (a) It is visible from the given figure, that the angle is smaller than the 90°. So we can say that the angle is acute angle.
 - (b) It is visible from the given figure that the angle is greater than the 90°. So we can say that it is an obtuse angle.
 - (c) It is visible from the given figure that the angle is exactly measured to be 90°. So we can say that it is a right angle.
- 4. Do yourself.
- 5. We know that the measure less than 90° of a angle can be only in acute angle.

If the measure of the angle is exactly 90° then it is said to be a right angle.

And in the obtuse angle the measure of the angle is greater than 90° .

- (a) $40^{\circ} < 90^{\circ}$ So it is an acute angle. (b) $75^{\circ} < 90^{\circ}$ So it is an acute angle. (c) $91^{\circ} > 90^{\circ}$ So it is an obtuse angle. (d) $90^\circ = 90^\circ$ So it is a right angle. (e) $101^{\circ} > 90^{\circ}$ So it is an obtuse angle. (f) $180^\circ = 180^\circ$ So it is a straight angle. (g) $30^{\circ} < 90^{\circ}$ So it is an acute angle (h) $179^{\circ} > 90^{\circ}$ So it is an obtuse angle. (i) $111^{\circ} > 90^{\circ}$ So it is an obtuse angle.
- (j) $160^{\circ} > 90^{\circ}$ So it is an obtuse angle.

Execise 20.3

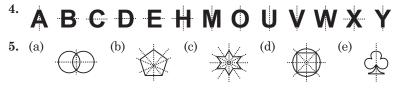
1. We know that a simple closed curves are those figures, those encloses some part or area by all the sides leaving so boundary open.

So, we can say that figures a, b, c and d are simple closed curves.

2. We know that a polygon has three or more than three sides forming it. Here we can see only c figure has three sides. So only (c) figure can be said to be a polygon.

- **3.** (a) From the concept of circle we know that the distance of the centre from the circle is called the radius. So in the given figure we can say that OA, OB and OE are the radii of the circles.
 - (b) The diameter is the chord of the circle which passes through the centre of the circle. So in the given figure we can say that AOB or AB is the chord passing through the centre of the circle. So, it is diameter.
 - (c) The centre of a circle is the equidistant point from all the options on the circe. So in the given figure we can say that point O is equidistant from all points on the circle. So O is its centre.
 - (d) The chord is the distance between two points on the circle. So, CD is the chord other than diameter.
- 4. (a) Given figure is the shape of an quadrilateral.
 - (b) We can count from the given figure that it has 6 line segments in all i.e. AB, BC, CD, DA, BD and CA.
 - (c) The line segment passing through A are AB, DA ad CA.
 - (d) It is visible that the given quadrilateral has 2 diagonals AC and BD.
- 5. Do yourself.
- 6. (a) :: Radius = 3 cm(b) :: Radius = 4 cm Diameter = $2 \times radius$ $Diameter = 2 \times radius$ $= 2 \times 3$ cm $= 2 \times 4$ cm = 6 cm= 8 cm(c) :: Radius = 10 cm(d) :: Radius = 8 cm Diameter = $2 \times radius$ Diameter = $2 \times radius$ $= 2 \times 10 \text{ cm}$ $= 2 \times 8 \text{ cm}$ = 20 cm= 16 cm(e) :: Radius = 12 cm
 - Diameter = $2 \times \text{radius}$ = $2 \times 12 \text{ cm} = 24 \text{ cm}$
- 7. We know that, square has all its sides equal and the quadrilater that has opposite sides equal and parallel is called rectanlge. So we can say that figures **a** and **c** arc of rectangle and figure **b** and **d** are of square.
- 8. (a) We know that diamters = 2 × radius Radius $\frac{\text{Diameter}}{2}$ $\frac{1.8}{2}$ m = 0.9 m (b) \because diameter = 2.6 dm (c) \because diameter = 7.4 dm radius $\frac{2.6}{2}$ dm = 1.3 dm radius $\frac{7.4}{2}$ dm = 3.7 dm

C.B.R.MODERN SR.SEC.SCHOOL BAHALA REWARI Page 105 of 105


(d) \therefore diameter = 11.6 m (e) :: diameter = 14 mradius $\frac{11.6}{2}$ m= 5.8 m radius $\frac{24.8}{2}$ m = 12.4 m 9. (a) We know that the circumference = $2 \times \times r$ Where *r* is the radius of the circle. Here radius = 35 cmThen circumference = $2 \times \times r$ 2 $\frac{22}{7}$ $\frac{5}{35} = 44 \times 5 = 220 \text{ cm}$ (c) \therefore radius = 21.7 dm (b) \therefore radius = 7.7 cm circumference = 2 rcircumference = 2 r $2 \frac{22}{2} \frac{3.1}{21.7}$ $2 \quad \frac{22}{2} \quad \frac{1.1}{7.7}$ $= 44 \times 3.1 = 136.4 \text{ dm}$ $= 44 \times 1.1 = 48.4$ cm (d) \therefore radius = 14.14 dm (e) \therefore radius = 14 m circumference = 2 rcircumference = 2 r $2 \frac{22}{7} \frac{2.02}{14.14} \,\mathrm{dm}$ $2 \frac{22}{7} \frac{2}{14} \text{ m}$ $= 44 \times 2.02 \text{ dm} = 88.88 \text{ dm}$ $= 44 \times 2 = 88 \text{ m}$

CHECK YOURSELF

1. to 4. As per answersheet.

Exercise 21

- 1. (a) We know that dividing a symmetrical shapes into two equal parts is called its line of symmetry.
- 2. Do yourself.
- 3. Do yourself.

CHECK YOURSELF

1. to 4. As per answersheet.